
 1

Revised April 2006 
 

Development of experimental setups for earthquake 
engineering education 

 
 
 
 
 

 
 

Final Report 
 
 
 
 

Submitted to 
 
 
 

National Program on Earthquake Engineering Education 
MHRD, Government of India 

 
by 

 
 
 
 

C S Manohar and S Venkatesha 
 
 

 
 

 
 
 

Department of Civil Engineering 
Indian Institute of Science 

Bangalore 560 012 
 



 2

Acknowledgements 
 

This work has been supported by the National Programme on Earthquake Engineering 
Education, Ministry of Human Resources Development, Government of India. Mr 
Somayya Ammanagi and Mr M R Karthik served as project assistants in this project. The 
project has also been benefited by contributions from Mr Ashutosh Srivastava (BTech 
student from BHU) and Mr P Dharma Teja Reddy (BTech student from IIT Guwahati) 
who underwent summer training at IISc. Ashutosh worked on the problem of dynamics of 
liquid storage tanks under base motion and Dharma Teja designed the frames with a weak 
and/or soft ground floor. We have had useful discussions with Professors R N Iyengar, D 
Roy and B K Raghu Prasad during the course of this work. Finally, we would like to 
thank Professor Sudhir K Jain of IIT Kanpur who enthused us to take up this work. 
 
The manuals were used as course material during the NPEEE short term course on 
“Earthquake engineering education through laboratory experiments” held at IISc during 
16-21 January 2006. The course participants provided a detailed feedback on the 
manuals, based on which, the present revised version has been produced. Mr M R 
Karthik has contributed significantly in affecting the revisions. 
 



 3

CONTENTS 
 

Acknowledgement                   2 
 
Contents                     3 
 
Summary                   5-8 
 
Part I  Students’ manual                                                                9-158 
       

 
1. Dynamics of a three storied building frame subjected to harmonic 

base motion. 
 

10-23

2. Dynamics of a one-storied building frame with planar asymmetry 
subjected to harmonic base motions. 

 

24-40

3. Dynamics of a three storied building frame subjected to periodic 
(non-harmonic) base motion. 

 

41-50

4. Vibration isolation of a secondary system. 
 

51-65

5. Dynamics of a vibration absorber. 
 

66-78

6. Dynamics of a four storied building frame with and without an open 
ground floor 

 

79-94

7. Dynamics of one-span and two-span beams. 
 

95-106

   8.   Earthquake induced waves in rectangular water tanks 107-118

   9.   Dynamics of free-standing rigid bodies under base motions 119-128

 10.   Seismic wave amplification, liquefaction and soil-structure 
interactions. 

 

129-151

Appendix A Analysis of linear multi-degree of freedom vibrating 
systems 

 

152-158

 
 

Part II Additional notes for the instructors                                       159-271                             
 
 

11. Dynamics of a three storied building frame subjected to harmonic base 
motion. 

160-173



 4

 
12. Dynamics of a one-storied building frame with planar asymmetry 

subjected to harmonic base motions. 
 

174-186

13. Dynamics of a three storied building frame subjected to periodic (non-
harmonic) base motion. 

 

187-190

14. Vibration isolation of a secondary system. 
 

191-204

15. Dynamics of a vibration absorber. 
 

205-217

16. Dynamics of a four storied building frame with and without an open 
ground floor 

 

218-233

17. Dynamics of one-span and two-span beams. 
 

234-246

   18. Earthquake induced waves in rectangular water tanks 
 

247-249

18. Dynamics of free-standing rigid bodies under base motions 
 

250-255

   20.  Seismic wave amplification, liquefaction and soil-structure interactions 
  

256-271

 
Part III Inventory of items and cost estimation 
 

 
      21. Inventory of items and cost estimation 
 

272-336
 

 



 5

Summary 
 

0.0 Background 
 
The study of structural dynamics in civil engineering curriculum is commonly perceived 
to be a difficult exercise, more so in India, especially at the undergraduate level, and, 
even at the graduate level, because of the mathematical nature of the subject. This 
difficulty is felt, not only by the students, but also, by the teachers, who may not have had 
formal advanced level training in the subjects of earthquake engineering and structural 
dynamics. Thus, there exists a need to develop suitable teaching and learning aids to 
augment the classroom teaching of these subjects. One of the most effective ways to 
achieve this would be to develop a suite of simple experimental setups which would 
enable the study of basic issues related to vibration behavior, such as, damping, dynamic 
response magnification, resonance, structural vibration under support motions, normal 
modes, vibration isolation, vibration absorption, dynamics with soft and/or weak 
first/intermediate stories, role of structural ductility in resisting dynamic loads, 
liquefaction of soils under dynamic loads, seismic wave amplification through soil layer, 
and rocking and up throw of rigid objects under dynamic base motions. These setups 
would provide valuable physical insights into the basic vibration behavior of structures in 
general, and, structural dynamic responses under base motions, in particular. The work 
reported in this document contains the work done at the Department of Civil Engineering, 
Indian Institute of Science, as a part of a development project funded by the National 
Program on Earthquake Engineering Education, MHRD, Government of India. 
 
0.1 Deliverables from the Project 
 

1. Development and installation of one set of working models at IISc. This also 
includes details of measurement layout, data acquisition and post processing of 
acquired data. 

2. Documents detailing the design of the experimental setups including details of 
material required and cost estimation. Requirements on transducers, data 
acquisition hardware and data processing software will also be provided. 

3. Documents detailing the laboratory exercises to be carried out by students and the 
layout of laboratory reports to be submitted by students. 

4. A set of additional notes for the instructors that contains details of experiments 
performed on setups developed at IISc and the development of simple to 
advanced analytical and experimental models for the vibrating systems developed. 
Questions on mutual agreement/disagreement between predictions of 
experimental and analytical models would also be discussed in this document. 

 
0.2 List of experimental setups developed 
 
1. Dynamics of a three storied building frame subjected to harmonic base motion. The 

frame possesses planar symmetry. Here the students learn the phenomenon of 
vibration of structures under base motions, occurrence of resonances in multi degree-
of-freedom (dof) systems, normal modes and their visualization, and the nature of the 
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frequency response functions in mdof systems. The study also enables the students to 
appreciate the value of shear beam models in earthquake engineering. 

2. Dynamics of a one-storied building frame with planar asymmetry subjected to 
harmonic base motions. The frame is configured such that it can be well modeled by a 
three dof system with two translations dofs and one rotation dof. The study enables 
the student to appreciate how horizontal base motion can induce torsional responses 
in frame structures.  

3. This experiment is a variation on the experiments 1 and 2 listed above, in which the 
base motion is made to impinge on the structure at an arbitrary angle. The student 
would learn about the importance of angle of incidence of base motions in computing 
structural responses. 

4. Dynamics of a secondary system mounted on the frame mentioned in experiment 1 
with and without a vibration isolator. The student here would learn about the concept 
of displacement transmissibility and conditions under which, an isolation device 
would be effective. 

5. Dynamics one span clamped beam subjected to harmonic motion and passive 
vibration control using the principle of dynamic vibration absorber.  

6. Dynamics of one/two span simply supported beams subjected to harmonic 
excitations. The student would learn about modes of a two span simply supported 
beam and their relation to modes of single span simply supported and propped 
cantilever beams. 

7. This experiment is a variation of experiments 1,2 and 3 mentioned above in which the 
frames would be subjected to nonharmonic periodic base motions. The student would 
learn about the use of Fourier series representations in analysis of structures under 
periodic base motions. 

8. Dynamics of freestanding rigid objects subjected to base motions. Questions on 
minimum ground acceleration levels needed to initiate rocking and accelerations 
required for the toppling of such blocks are also addressed. 

9. Dynamics of four-storied building frames with and without a soft first/intermediate 
story.  

10. Setups that mimic seismic wave motion through soil layers, liquefaction in soil layers 
subjected to dynamic base motions and dynamic soil structure interactions. 

11. Behavior of water tanks under base motions. The focus of the study is on 
understanding the nature of earthquake induced waves in rectangular water tanks with 
rigid walls. 

 
0.3 Shake tables developed 
 
As a part of this work we have developed three electro-mechanical shake tables. Two of 
these provide horizontal base motions. Both these tables have the capabilities for 
applying harmonic base motions with one of the tables having additional capability to 
apply nonharmonic but periodic base motions. Furthermore, these tables have the 
provision to mount the test structure at any desired angle with respect to the direction of 
applied base motion. The third table has capability to apply harmonic vertical base 
motions. 
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0.4 Format of the activities and the format of this report 
 
In conducting each of the experiments listed above, the following activities are 
performed: 
 

• The conduct of the experiment as we would expect the student to do. 
• Development of approximate mathematical model for the system under study as 

we would expect the student to achieve. 
• The conduct of the experiment using advanced techniques of experimental modal 

analysis, such as, impulse hammer tests for measurement of frequency response 
functions, to be followed by modal extraction using inverse procedures. This 
activity is limited to only those experiments in which the structure under study 
can be taken to behave linearly. 

• Development of a sophisticated finite element models for the systems under 
study. 

 
The first two activities are to be pursued by students who perform the experiments, while, 
results of the last two activities are provided to the laboratory instructors for gaining 
deeper understanding of the behavior of the structural systems under study.  
 
Accordingly, this document is divided into three parts and the following is a summary of 
these parts. 
 
Part I: Students manual:  
 
This document is to be provided to the students prior to the conduct of the experiment. 
This describes the requisite preparation that the student needs to make before he/she 
conducts the experiment. It also provides the format for writing the report, recording the 
experimental observations, and lists a few questions that the students need to answer at 
the time of submitting the laboratory report. 
 
Part II: Additional notes for the instructors:  
 
This contains the outcome of detailed studies conducted on the setups developed at IISc. 
This typically includes the details of the conduct of the experiment as the student would 
do, more sophisticated experimental studies involving EMA and also outcome of detailed 
finite element analysis of the models developed. It is hoped that these details would 
provide deeper insights to the instructors on the behavior of models. 
 
Part III: Inventory of items and cost estimation 
 
The details of all the models, sensors, signal conditioners, data acquisition system, 
oscilloscope and shake tables that are used in conducting the experiments are provided. 
This Part also contains two commercial quotes from two vendors for the fabrication of all 
models and shake table needed for conducting the ten experiments. 

 



 8

0.5 Conclusions 
 

1. The experimental setups developed are reasonably simple, cost-effective and, yet 
the same time, demonstrate a wide range of dynamic phenomena of relevance to 
earthquake engineering problems. This range covers issues such as damping, 
dynamic response magnification, resonance in multi-degree of freedom systems, 
structural vibration under support motions, normal modes, vibration isolation, 
vibration absorption, dynamics with soft first/intermediate stories, liquefaction of 
soils under dynamic loads, seismic wave amplification through soil layer, soil-
structure interactions, and rocking and up throw of rigid objects under dynamic 
base motions. 

2. Detailed documents suitable for use by students and instructors have been 
developed. The students’ manual contains specification of experimental 
procedure, methods for developing simplified mathematical models, and 
preparation of laboratory report. A set of questions are also provided for each of 
the experiments with a hope that they might trigger interest in the mind of 
students to undertake further studies possibly leading to BE project work. The 
notes for the instructors’ are aimed at providing insights into the system behavior 
and possible limitations in the setups developed. A detailed inventory of items 
and equipment and cost estimation has also been provided to facilitate educational 
institutes in India to fashion developments of setups similar to those described in 
this document. 

3. Detailed studies using advanced tools such as experimental modal analysis and 
finite element modeling have also been conducted and documented on these 
setups with a view to understand the scope and limitations of the setups 
developed. These detailed studies have enabled the recommendation of 
appropriate simplified procedures that students can use in a laboratory class to 
conduct experiments as a part of a laboratory curriculum. 

4. It is estimated that, for a laboratory equipped with accelerometers (at least two), 
signal conditioners (at least two channels), and the computer based data 
acquisition system, the cost of acquiring the models, shake tables and oscilloscope 
is estimated to be about Rs 2.3 lakhs. If the laboratory is not equipped as above, 
the cost is estimated to be about Rs 4.0 to 6.5 lakhs depending upon the 
specifications and make of signal conditioners, accelerometers and data 
acquisition system. 



 9

 
 
 
 
 
 
 

PART I 
 
 

STUDENTS’ MANUAL 



 10

Experiment 1 
 

Dynamics of a three storied building frame subjected to harmonic base 
motion. 

 
1.1 Background 
 
We study in this experiment the behavior of a three storied building frame model 
subjected to harmonic base motions. This experiment also enables the understanding of 
occurrence of resonance phenomenon in simple multi-degree of freedom (MDOF) 
systems. The frame is rectangular in plan with stiffness and mass properties distributed 
uniformly in plan as well as in elevation. The frame is designed to facilitate the 
visualization of the first three mode shapes with bare eyes. Also, the frame is so 
configured such that a three degrees of freedom model would serve as a reasonable 
model, at least to a first approximation. See, for instance, the book by Paz (1984) for the 
details of mathematical modeling. A brief description of normal modes and their use in 
vibration analysis is also provided in Appendix A of this manual. The model shown in 
figure 1.1 can be thought of as a model for a building frame with three floors which 
suffers earthquake like base motions. The model however is an idealized demonstration 
of this phenomenon since the building can only be subjected to harmonic base motions. 
The frequency of the base motion can be varied by changing the RPM of the electric 
motor; it is also possible to vary the amplitude of the base motion by adjusting the stroke- 
this adjustment, however, requires somewhat involved manipulations. By changing the 
motor RPM it would be possible to set the frame into resonant motions, which would 
enable you to visualize the first three normal modes of the frame.  
 
1.2 Experimental setup 
 
Figures 1.1 and 1.5 show the experimental setup. This consists of four aluminum columns 
and four aluminum slabs each attached to the four columns at an interval of 400 mm. The 
entire structure assembly (figure 1.4) is placed on a shake table driven by an electric 
motor.  The RPM of the motor can be varied to achieve harmonic base motions at 
different frequencies. In the set-up at IISc, the amplitude of base motion can also be 
varied but this aspect is not crucial in the conduct of the present experiment. 
 
1.3 Mathematical model 
 
The frame in figure 1.1 can be approximately modeled as a three degree of freedom shear 
beam as shown in figure 1.2a. Following the free body diagram shown in figure 1.2b, we 
can set up the equation of motion for the total displacement of the three masses as 
follows: 
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This can be re-cast into the matrix form as 
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In a more compact form the equation reads 
 
[ ]{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ }yKyCxKxCxM Γ+Γ=++ &&&&          …1.3 
 
In these equations a dot represents differentiation with respect to the time, { } 13×=x  
vector of total displacement, {y(t)} is the applied harmonic base motion, M,C and K, are 
respectively the 33×  structural mass, damping and stiffness matrices, { } 13×=Γ  vector 
of ones. In deriving this model it is assumed that slabs are very rigid with the columns 
supplying all the stiffness for the system. The inertia is manly contributed by the slabs; 
allowance can be made for taking into mass of the columns and screws at the joints. The 
undamped natural frequencies and modal vectors can be computed for the mathematical 
model by solving the eigenvalue problem .2 φωφ MK =  These solutions, in turn, can be 
used to evaluate the forced response analysis by assuming that the undamped modal 
matrix would diagonalize the damping matrix also. Alternatively, solution to equation 1.3 
can also be constructed by noting that, under harmonic excitations, the system would 
respond harmonically at the driving frequency as time becomes large. Accordingly, when 

]exp[)( tiYty ω= we can take the solution to be of the form ]exp[)()( tiXtx ωω= as 
∞→t . This leads to  
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The matrix [ ]KCiM ++− ωω 2  can be thought of as the stiffness matrix of the structure 
that includes the effects of mass and damping and therefore, is referred to as the dynamic 
stiffness matrix. Refer to Appendix A for details on response analysis using normal mode 
expansion. Figure 1.3 shows typical plots of amplitude and phase spectra for a three-dof 
system. 
 
The parameters of the above model can be arrived at by following the usual assumptions 
made in construction of shear beam models (Paz 1984). Thus one gets 

sccs

sccs

c

AA

A
c

MMMM
MMMMM

KKKK

DB
I

L
EIK

8)*5.0*4(
84

4
12

;12

3

21

321

3

3

++=
++==

===

==

                                                                                    …1.5 

 



 12

Here E= Young’s modulus, I=moment of inertia, BA=breadth of column cross-section, 
DA=depth of the column cross-section, LA= length of column, Mc=mass of individual 
column, and Msc=mass of screws at the joints. The damping properties of the structure 
need to be established based on experimentation. 
 
1.4.0 Experimental procedure 
 
1.4.1 Instruments and sensors 
 
            Table 1.1 provides the details of instruments to be used in the experimental study. 
 

      1.4.2 Preliminary measurements 
 

a) Collect the data pertaining to geometric and material properties of the vibrating 
system (tables 1.2 and 1.3). Parts of data in table 1.2 have to be obtained from the 
instructor/handbooks. 

b) Using the three-degrees of freedom model, form the mass and stiffness matrices 
of the structure. Perform the eigenvalue analysis and determine the natural 
frequencies and modal matrix for the system. 

c) Study the charts/manuals that accompany the sensors and the charge amplifiers 
and note down the sensor sensitivities, sensor mass and factors to convert the 
measured electrical signal into mechanical units; this depends upon the amplifier 
settings used- see table 1.4. 

d) Run the electric motor at a few frequencies and measure the amplitude of the base 
motion. These amplitudes are expected to be identical and also would remain 
unchanged as the speed of the motor is varied. Therefore, in the subsequent 
experimentation, the base motion itself need not be measured.  

 
1.4.3 Studies on 3-storyed shear beam model 
 

e) Arrange the experimental setup as shown in figures 1.1 and 1.5. Note that the 
accelerometer needs to be placed on slab in such a way that displacement along x-
direction is picked up. 

f) Set the frame into free vibration by applying an initial displacement. This can be 
achieved by gently pulling the frame at about the top slab and releasing it. 
Observe the free vibration decay on the oscilloscope and record the results as per 
the format given in table 1.5. Evaluate the logarithmic decrement and hence the 
damping ratio. One model for the damping can be obtained by assuming that the 
damping ration so determined would remain constant for all the modes. 

g) Run the base motion test on the frame at different values of motor RPM making 
sure that readings at resonant frequencies are not missed.  For a given motor 
RPM, allow the frame to oscillate for a few seconds so that the frame reaches its 
steady state. At this stage measure the amplitude of the frame response by using 
time history of displacement response acquired on the oscilloscope and record the 
amplitude data as in table 1.6. Note that the frequency of driving and the 
frequency of structural response can be assumed to be equal and this can be 
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measured from the trace of displacement response on the oscilloscope. It may be 
noted that the test could be conducted even if only two channel measurements are 
possible, in which case, the above steps need to be repeated suitably.  

h) The frequencies at which the structure undergoes resonance can be identified by 
observing the variation of response amplitudes as motor RPM is varied. At 
resonant conditions, in addition to noting the amplitude of slab oscillations, also 
note if the slabs are vibrating in phase or not. Based on this information the modal 
vectors for the first three modes could be established. Compare these mode shapes 
with the analytical mode shapes obtained in step (b). 

i) Plot  X1,  X2 and X3 versus f.  
j) From the plots in the previous step estimate the modal damping either by half-

power bandwidth method or by relating the peak amplitude to the modal damping 
(see Paz, 1984, for details). 

k) Using the modal damping ratios obtained in steps (f) or (j) determine the C matrix 
using the relation [ ] [ ] 11 ][ −−

ΦΞΦ= tC  where Ξ is a diagonal matrix with entry on 

the nth row being .2 nnωη  It can be shown that [ ] Φ=Φ
− Mt 1 and [ ] MtΦ=Φ −1 , 

and, therefore, one gets MMC tΦΞΦ= (see Appendix A). Using this C matrix 
and equation 1.3, solve the mathematical model to determine analytically the 
amplitude of floor responses as a function of the driving frequency. Compare 
these analytical predictions with the measured frequency response functions. 

 
1.5       Report submission 

 
1. Document the experimental observations and the deductions as per the format 

given in tables 1.2-1.8. 
2. Develop the experimental model as per the simplifications suggested in figure 1.2. 
3. Document the plots of floor response amplitudes as a function of the driving 

frequency obtained using analysis as well as experiment. Discuss the qualitative 
features of these plots. Explain the mutual agreement/disagreement between 
theoretical and experimental results. 

4. Respond to the following questions: 
 

• Often, in analysis, we determine the normal modes by ignoring the effect of 
damping. What happens in an experimental situation? 

• Can the present set-up be used to simulate earthquake like ground motions? 
• Can you think of alternative ways of simulating response of building frames to 

earthquake ground motions without actually having to apply support motions, 
that is, without the help of a shake table? 

• What are the limitations of the testing a structure on a shake table? Consider 
for instance, issues related to soil structure interaction, spatial variability of 
ground motions and the need for geometric scaling of structures. 

 
1.6 Reference 
 
1. M Paz, 1984, Structural dynamics, CBS Publishers, New Delhi. 
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Figure 1.1 Experimental setup for three-story shear building frame 
 

 
 
 
 
 
 
 

 
 

(a) 
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(b) 
 

Figure 1.2 Multi mass-damper-spring model representation of a three-story shear building 
subjected to harmonic base motion, y(t)=Yeiωt ; (a) mathematical model (b) free body 
diagram 
 

 

 

 

 

 
(a) 
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(b) 

 

 
(c) 

 
Figure 1.3 Amplitude and phase spectra of absolute responses of three-story building frame subjected to 
harmonic base motion; (a) response at I floor; (b) response at II floor; (c) response at III floor 
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Figure1.4 Three-story shear building model used in experiment 
 

 

 
Figure 1.5. Setup for studies on three-story shear building frame 

 
 

 
 



 18

 

Table 1.1 Equipments used in free vibration and forced vibration test of three-story shear building frame 

No. Equipments Quantity 
1 Oscilloscope 1 
2 Accelerometers 3 
3 Transducers conditioning amplifiers 1 
4 Shake table 1 

 

Table 1.2 Physical properties of parts of the structure 

Material Properties 
No. Part Material Mass 

kg Young’s Modulus 
(E) N/m2 

Mass density (ρ) 
kg/m3 

1 Column Aluminum Mc =   
2 Slab Aluminum Ms=   

3 Allen screw, 
M8 Steel Msc= - - 

 
 

Table 1.3 Geometric data of the structure 

Dimensions in mm No. Part Depth (D) Width (B) Length (L) 
1 Column DA = BA = LA = 
2 Slab DB = BB = LB = 

 

Table 1.4 Details of the sensors used; CF: conversion factor 

Sensitivity, S No. Sensor pC/ms-2 pC/g CF Mass 
kg 

1      
2      
3      

 

Table 1.5 Free vibration test data on three-story shear building frame 

No. Quantity Notation Observations 
1 Amplitude of 0th peak A0  
2 Amplitude of nth peak An  
3 Number of cycles n  
4 Logarithmic decrement δ  
5 Damping ratio ζ  
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Table 1.6.1 Base motion test data on three-story shear building frame 

S.No. Frequency, 
f 

(Hz) 

Frequency 
ω=2πf 
(rad/s) 

Amplitude 
σ1 

rms (V) 

Amplitude
σ2 

rms (V) 

Amplitude
σ3 

rms (V) 

Displacement 
Amplitude 

X1 = 
2  (CF) σ1 

(m)  

Displacement 
Amplitude 

X2 = 
2  (CF) σ2 

(m) 

Displacement 
Amplitude 

X3 = 
2  (CF) σ3 

(m) 
1         
2         
3         
4         
5         
6         
7         
8         
9         
10         
11         
12         
13         
14         
15         
16         
17         
18         
19         
20         
21         
22         
23         
24         
25         
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Table 1.6.2 Base motion test data on three-story shear building frame; measurement made at first floor 

 
S.No. Frequency, 

f 
(Hz) 

Frequency 
ω=2πf 
(rad/s) 

Amplitude 
σ1 

rms (mV) 

Displacement 
Amplitude 

X1= 2  (CF) σ1 
(m)  

1     
2     
3     
4     
5     
6     
7     
8     
9     
10     
11     
12     
13     
14     
15     
16     
17     
18     
19     
20     
21     
22     
23     
24     
25     
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Table 1.6.3 Base motion test data on three-story shear building frame; measurement made at the second 
floor 

S.No. Frequency, 
f 

(Hz) 

Frequency 
ω=2πf 
(rad/s) 

Amplitude 
σ2 

rms (mV) 

Displacement 
Amplitude 

X2= 2  (CF) σ2 
(m)  

1     
2     
3     
4     
5     
6     
7     
8     
9     
10     
11     
12     
13     
14     
15     
16     
17     
18     
19     
20     
21     
22     
23     
24     
25     
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Table 1.6.4 Base motion test data on three-story shear building frame; measurement made at the third floor 

S.No. Frequency, 
f 

(Hz) 

Frequency 
ω=2πf 
(rad/s) 

Amplitude 
σ3 

rms (mV) 

Displacement 
Amplitude 

X3= 2  (CF) σ3 
(m)  

1     
2     
3     
4     
5     
6     
7     
8     
9     
10     
11     
12     
13     
14     
15     
16     
17     
18     
19     
20     
21     
22     
23     
24     
25     

 

Note: The format in Table 1.6.1 can be used if all the three floor responses are measured 
simultaneously. If only one measurement at a time is possible (due to lack of availability of 
adequate number of sensors, signal conditioners or data acquisition channels), then the 
experiment need to be run repeatedly suitable number of times. In this case, the formats given in 
Tables 1.6.2 to 1.6.4 could be used for recording the observations. In case the tests are run 
repeatedly, it may not be possible to maintain identical steps in incrementing the driving 
frequency because of lack of perfect control on specifying driving frequency.  
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Table 1.7 Estimate of the natural frequencies of the three-story shear building frame 

Natural frequencies in Hz Mode No. 3-DOF Model Experiment  
1   
2   
3   

 
 

Table 1.8 Estimate of the mode shapes of the three-story shear building frame 

Mode shapes 
3-DOF Model Experiment  

I mode II mode III mode I mode II mode III mode 
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Experiment 2 

 
Dynamics of a one-storied building frame with planar asymmetry 

subjected to harmonic base motions. 
 

2.1 Background 
 
The earthquake response of building frames that are asymmetric in plan is characterized 
by coupling between translational and torsional degrees of freedom (dofs). Here the 
asymmetry could arise due to unsymmetrical distribution of mass, stiffness, damping 
and/or strength characteristics. Such structures, when subjected to horizontal support 
motions, display not only bending oscillations, but also, undergo torsional vibrations. The 
present experiment aims to demonstrate this phenomenon. The structure under study is a 
model for a single bay, single story-building frame (figures 2.1 and 2.2) that consists of a 
relatively rigid rectangular steel slab supported at the corners on three aluminum and one 
steel columns. Thus, in plan, the structure is asymmetric with the steel column possessing 
higher lateral stiffness than the other three aluminum columns. Apart from the 
distribution of stiffness, the mass and damping characteristics offered by the steel and 
aluminum columns would also contribute to the planar asymmetry of the structure. Since 
the slab is much stiffer than the columns, under the action of dynamic base motions, it is 
reasonable to assume that the slab would displace in its own plane. In the experimental 
setup the frame is mounted on a table that is driven by an electric motor (figure 2.1).  
This mount is designed in such a way that the angle of incidence of the base motion on to 
the frame can be varied over 0 to π/2. Thus, under the action of base motion, the slab 
displaces in x,y, and θ  directions; see figure 2.3. This implies that the frame not only 
bends in x and y directions, but also, would twist about the z-axis. The objectives of the 
present experiment are: 
 

(a) to understand the dynamics of the frame as the frequency of base motion is varied 
across the resonant frequencies of the frame, and 

(b) to understand the influence of the angle of incidence of the base motion on the 
dynamic response of the frame. 

 
2.2 Experimental setup 
 
Figure 2.1 and 2.2 show the building frame mounted on the electric motor driven shake 
table. By varying the speed of the motor the frequency of the harmonic base motion could 
be varied. Also, the mounting device is capable of swiveling about the vertical axis, 
which would permit us to mount the frame at different angles relative to the axis of the 
table motion. Figure 2.4 shows a typical set up detailing the sensor placement for the 
purpose of conducting the experiment. The transducers A1 and A5 measure translation 
along x and y directions; A1, A2 and A3 can be used to measure the angle θ; A4 and A6 
measure the base motions in x and y directions respectively. Although this figure shows 
six displacements as being measured simultaneously, in the actual conduct of the 
experiment, however, this many measurement channels might not be needed. Depending 
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upon the availability of the number of transducers and signal conditioners, measurements 
on displacements in x, y and θ directions could be carried out is separate runs of the 
experiment. It may also be noted that the set up permits the measurement of the angle of 
incidence of the base motion onto the frame; also, the amplitude of the table motion could 
be held constant, while the frequency of excitation could be varied by changing the RPM 
of the electric motor. Thus it would not be absolutely essential to keep measuring the 
base motion during the entire process of experimentation. One can identify the amplitude 
of the base motion at the outset by measuring this quantity for a few selected RPMs. 
During the conduct of the experiment, when the base motion is not actually measured, the 
frequency of excitation could be inferred from the frequency of response of the slab. As 
is well know, the frequency of harmonic base motion and linear system response in the 
steady state are equal. Also, to measure the rotation of the slab about the z-axis, any two 
measurements among A1, A2 and A3 could be used.  
 

2.3 Mathematical model 
 

To a first approximation, the building frame can be modeled as a three-dof system as 
shown in figure 2.5. The origin of reference is taken to coincide with the mass center of 
the frame. Figure 2.5 shows the idealized physical model in which the slab is assumed to 
be rigid and it is taken to displace in its own plane with two translations and one rotation.  
The four columns are replaced by a set of springs and dampers. Half of the mass of 
columns could be taken to participate in offering inertia. Figure 2.6 shows the free body 
diagram with all the forces acting on the slab explicitly displayed. The equation of 
motion can thus be deduced as 
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This equation can be recast in the matrix form as 
 

)(tfKuuCuM =++ &&&          …(2.2) 
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Here { }tyxu θ= and the mass, damping and stiffness matrices are given, respectively, by 
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Furthermore, the forcing vector f(t) can be shown to be given by  
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The parameters appearing in the above model are evaluated as follows: 

Location of mass center (see figure 2.7) 
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Here ρs=mass density of steel, ρa= mass density of aluminum, Aa, As=areas of cross 
section of aluminum and steel columns respectively, h=height of the columns; refer 
figure 2.7 for the meaning of other symbols appearing in the above equation. 
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Stiffness coefficients 
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It may be noted that we can add the following terms to the stiffness coefficient k33 
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These terms represent the contribution to the torsional stiffness of the frame by shear 
rigidity of the individual columns. Here GJ=shear modulus, D=diameter and the 
subscripts al and s, respectively, denote aluminum and steel. 

 

Elements of mass matrix (see figure 2.8) 
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Here ral, rs= radii of the aluminum and steel columns respectively. It may be noted that 
the mass moment of inertia I is being computed with respect to the mass center of the 
system. The first term in the expression for I above denotes the mass moment of inertia of 
the steel slab with respect to its own center computed using the expression 
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As has been mentioned already, the experimental setup permits the mounting of the 
building frame at different angles. Thus if α is the angle of incidence of the base motion 
with respect to the horizontal reference axis of the building frame model (see figure 2.3), 
and, if Δ(t) is the applied base motion along the axis of the table motion, we get 
 

αα sin)()(cos)()( ttyttx gg Δ=Δ=                     …(2.10) 

The elements of damping matrix can be computed, if need be, based on the measurement 
of modal damping ratios. 
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Once the elements of the structural matrices are computed, the governing equation of 
motion can be solved either by using the modal expansion technique or by inverting the 
dynamic stiffness matrix (see Appendix A). Since the base excitations are harmonic, the 
method based on inversion of dynamic stiffness matrix leads to steady state response 
given by 
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Figure 2.9 shows plots of typical amplitude and phase spectra of floor displacements for 
the problem on hand. 
 

2.4.0 Experimental procedure 
 
2.4.1 Instruments and sensors 
             
            Table 2.1 provides the details of instruments to be used in the experimental study. 
 
2.4.2 Preliminary measurements 
 

1. Collect the data pertaining to geometric and material properties of the 
vibrating system (tables 2.2 and 2.3). Parts of data in table 2.2 have to be 
obtained from instructor/handbooks. 

2. Locate the mass center. 
3. Using the three-degrees of freedom model, form the mass and stiffness 

matrices of the structure. Perform the eigenvalue analysis and determine the 
natural frequencies and modal matrix for the system. 

4. Study the charts/manuals that accompany the sensors and the charge 
amplifiers and note the sensor sensitivities, sensor mass and factors to convert 
the measured electrical signal into mechanical units; this, in turn, depends 
upon the amplifier settings used; see table 2.4. 

5. Run the electric motor at a few frequencies and measure the amplitude of the 
base motion. These amplitudes are expected to be identical and also would 
remain unchanged as the speed of the motor is varied. Therefore, in the 
subsequent experimentation, the base motion itself need not be measured.  

 
2.4.3 Studies with fixed angle of incidence of base motion (α=0) 
 

1. Arrange the experimental setup as shown in figure 2.4. Note that the 
accelerometer needs to be placed on slab in such a way that displacement 
along x-direction is picked up. It is advantageous to mount the sensor along 
axes passing through the mass center; this however is not essential. 

2. Run the base motion test on the frame at different values of motor RPM 
making sure that readings at resonant frequencies are not missed.  For a given 
motor RPM, allow the frame to oscillate for a few seconds so that the frame 
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reaches its steady state. At this stage measure the amplitude of the frame 
response by using time history of displacement response acquired on the 
oscilloscope and record the amplitude data as in table 2.5. Note that the 
frequency of driving and the frequency of structural response can be assumed 
to be equal and this can be measured from the trace of displacement response 
on the oscilloscope. It may be noted that the test could be conducted even if 
only two channel measurements are possible; in which case, the above steps 
need to be repeated suitably.  

3. The frequencies at which the structure undergoes resonance can be identified 
by observing the variation of response amplitudes as motor RPM is varied. At 
resonant conditions, note the amplitude of slab oscillations. Record the natural 
frequencies obtained from the theory and experiments as in Table 2.6. 

4. Plot the response amplitudes along x-axis and the rotation as a function of the 
driving frequency. 

5. From the plots in the previous step estimate the modal damping either by half-
power bandwidth method or by relating the peak amplitude to the modal 
damping (see the book M Paz, 1984, Structural dynamics, CBS Publisher, 
New Delhi,  for details). 

6. Using the modal damping ratios obtained in the previous step determine the C 
matrix using the relation [ ] [ ] 11 ][ −−

ΦΞΦ= tC  where Ξ is a diagonal matrix 

with entry on the nth row being .2 nnωη  It can be shown that [ ] Φ=Φ
− Mt 1 and 

[ ] MtΦ=Φ −1 , and, therefore, one gets MMC tΦΞΦ= (see Appendix A). 
Using this C matrix and equation 2.2, solve the mathematical model to 
determine analytically the amplitude of floor responses as a function of the 
driving frequency. Compare these analytical predictions with the measured 
frequency response functions. 

 
2.4.4 Studies with varying angle of incidence of base motion 
 
Here we hold the motor RPM fixed and vary the angle of incidence of the base 
motion by mounting the frame on the table at a desired angle in the range of 0 to π/2. 
Table 2.7 provides the format for recording the data. Theoretical predictions for this 
situation could also be obtained by solving equation 2.2 with 

.sin)()(&cos)()( αα ttyttx gg Δ=Δ=   
 

2.5 Report submission 
 

1. Document the experimental observations as per format given in tables 2.2-2.7. 
2. Develop the experimental model as per the simplifications suggested in figures 

2.4 and 2.5. 
3. For α=0, document the plots of floor response amplitudes as a function of the 

driving frequency obtained using analysis as well as experiment. Discuss the 
qualitative features of these plots. Explain the mutual agreement/disagreement 
between theoretical and experimental results. 
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4. For a few fixed values of driving frequency vary α and plot the system response 
as function of α. Obtain the corresponding results from the analysis of the 
mathematical model. Compare the theoretical and experimental predictions on 
system behavior and discuss the reasons for mutual agreement/disagreement.  

5. Respond to the following questions: 
 

• Discuss the structure of equation of motion vis-à-vis the choice of the 
coordinate system chosen for setting up the equation of motion. Just as we 
have located the mass center we can also locate the elastic center and the 
damping center. Carry out this exercise. What would happen if we were to 
choose coordinate system with these alternative points as origins? Would 
the natural frequencies, mode shapes and modal damping ratios change if 
we change the coordinate system? 

• Derive terms in equations 2.6,2.7 and 2.8. 
• If we replace the steel column by a aluminum column, identical to the 

other three columns, what changes would you expect in the dynamic 
behavior of the frame? 

• Because of the torsional oscillation of the frame, what type of stresses do 
you expect in the columns? 

• Provide five examples of structures in practice that possess asymmetric 
plan. 
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Figure 2.1 Experimental setup for one-story building frame. Notice that the building frame can be 
mounted on the base plate at any desired angle relative to the axis of the table motion. 

 

 
Figure 2.2 Details of the frame made up of a steel slab supported on one steel 

column and three aluminum columns. 
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Figure 2.3 Displacement of the steel slab in its own plane. The origin here is taken to 
coincide with the mass center of the structure. 

 
 

 
 

Figure 2.4 Setup for studies on one-story building frame 
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Figure 2.5 Rigid mass-damper-spring model representation of the frame subjected to 
harmonic base motions xg(t) and yg(t). 

 

 
Figure 2.6 Free body diagram showing the forces acting on the frame. 
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Figure 2.7 Location of the mass center. 

 
(a) 

 
(b) 

Figure 2.8 Illustrative sketch for the computation of mass moment of inertia I. 
(a) contribution from the slab; (b) contributions from the four columns. 
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(a) 

 
(b) 

 
(c) 

Figure 2.9 Amplitude and phase spectra of absolute responses of one-story building frame subjected to 
harmonic base motion; α=0; responses along (a) x  (b) y and (c) θ directions 
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Table 2.1 Equipment used in free vibration and forced vibration test of one-story building frame 
 

S.No. Equipment Quantity 
1 Oscilloscope 1 
2 Accelerometers 2 
3 Conditioning amplifiers 2 channels 
4 Shake table 1 

 
Table 2.2Physical properties of parts of the structure 

Material Properties 

Sl. 
No. Part Material Mass 

kg 
Mass 

Density 
(ρ) 

Modulus 
of 

elasticity 
(E) 

Poisson’s 
ratio (μ)  

1 Columns (3 
nos.) Aluminum (m1+m2+m3) 

=    

2 Column (1 
no.) Steel m4=    

3 Slab (1 no.) Steel Ms=    
 

Table 2.3 Geometric data of the structure 

Sl. No. Part Dimensions in mm 
Depth (t)  

Length (bs  )  1 Slab 
Width (ds)  

Diameter (Dal)  2 Aluminum 
Column  Length (L)  

Diameter (Ds)  3 Steel Column Length (L)  
 
 

Table 2.4 Details of the sensors used 

Sensitivity, S Sl. No. Sensor mV/ms-2 mV/g 
Mass 

kg 
1     
2     
3     
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*Table 2.5 Base motion test data on one-story building frame; Amplitude of base motion,  Δ =                   mm 

 
Sl. 
No. 

Frequency, 
f 

(Hz) 

Frequency 
ω=2πf 
(rad/s) 

Amplitude 
σ1 

rms (V) 

Amplitude 
σ2 

rms (V) 

Amplitude 
σ3 

rms (V) 

Conversion 
Factor 

CF1 
(V/m) 

Displacement 
Amplitude 

X = 
2  (CF1) σx 

(m)  

Conversion 
Factor 

CF2 
(V/m) 

Displacement 
Amplitude 

X1 = 
2  (CF2) 
σx1 
(m) 

Conversion 
Factor 

CF3 
(V/m) 

Displacement 
Amplitude 

X2 = 
2  (CF3) 
σx2 
(m) 

Torsion** 
θz 

(rad) 

1             
2             
3             
4             
5             
6             
7             
8             
9             

10             
11             
12             
13             
14             
15             
16             
17             
18             
19             
20             

*This table can be used if all responses are measured simultaneously **The formula used to find rotation is ( )
⎥
⎦

⎤
⎢
⎣

⎡ −
= −

1

211tan
Sd

xx
θ  
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Table 2.5.1 Base motion test data on one-story building frame; Measurement made at first floor along 
X direction; Amplitude of base motion,  Δ =                   mm 

 
S.No. Frequency, 

f 
(Hz) 

Frequency 
ω=2πf 
(rad/s) 

Amplitude 
σx 

rms (mV) 

Conversion 
Factor 

CF 
(V/m) 

Displacement 
Amplitude 

X = 2  (CF) σx 
(m)  

1      
2      
3      
4      
5      
6      
7      
8      
9      
10      
11      
12      
13      
14      
15      
16      
17      
18      
19      
20      
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Table 2.5.2 Base motion test data on one-story building frame; measurement made at first floor along X 
direction; Amplitude of base motion,  Δ =                   mm 
 

Sl. 
No 

Frequency 
f 

(Hz) 

Frequency 
ω=2πf 
(rad/s) 

Amplitude 
σx1 

rms (mV) 

Amplitude 
σx2 

rms (mV) 

Conversion 
Factor 

CF 
(V/m) 

Displacement 
Amplitude 

X1 = 
2  (CF) σx1 

(m) 

Displacement 
Amplitude 

X2 = 
2  (CF) σx2 

(m) 

Rotation** 
θz 

(rad) 

1         
2         
3         
4         
5         
6         
7         
8         
9         
10         
11         
12         
13         
14         
15         
16         
17         
18         
19         
20         

 

**The formula used to find rotation is 
( )

⎥
⎦

⎤
⎢
⎣

⎡ −
= −

1

211tan
Sd

xx
θ . 
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Table 2.6 Estimate of the natural frequencies of the one-story building frame 

Natural frequencies in Hz Mode No. 3-DOF Model Experiment  
1   
2   
3   

 
Table 2.7 Base motion test data on one-story building frame; Frequency of excitation =        Hz; 
Amplitude of base motion =                 mm 

 
Sl. 
No
. 

Angle of 
Incidenc

e 
(degrees) 

Amplitud
e 
σx 

rms (mV) 

Amplitud
e 
σy 

rms (mV) 

Conversio
n 

Factor 
CF 

(V/m) 

Displacemen
t Amplitude 
X = 2  (CF) 

σx 
(mm) 

Displacemen
t Amplitude 
Y = 2  (CF) 

σy 
(mm) 

1 0      
2 5      
3 10      
4 15      
5 20      
6 25      
7 30      
8 35      
9 40      
10 45      
11 50      
12 55      
13 60      
14 65      
15 70      
16 75      
17 80      
18 85      
19 90      
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Experiment 3 
 

Dynamics of a three storied building frame subjected to periodic 
(non-harmonic) base motion. 

3.1. Background 
 
In Experiment 1 we have studied the dynamic behavior of a three-storied building 
frame model subjected to harmonic base motions. We learnt that the dynamic 
response of the system could be construed as being the sum of contributions from a 
set of uncoupled modes of the system. The present experiment is a follow-up on this 
previous experiment. Herein we study the dynamic behavior of the same frame when 
subjected to non-harmonic but periodic base motions. These base motions will be 
provided by a cam-follower arrangement on the shake table as shown in figures 3.1 
and 3.2. The table is driven by an electric motor whose speed can be varied. By doing 
so, we would be in a position to generate periodic base motions of differing periods. 
Figure 3.3 shows the plot of a typical base motion measured on the table. Just as a 
vibrating system can be mathematically built-up in terms of uncoupled single degree 
of freedom oscillators, we can build periodic motions in terms of sine and cosine 
functions. The theory of Fourier series representations provides the necessary 
mathematical tools to achieve this. Thus, it turns out that the dynamic response of a 
single degree of freedom system to a single harmonic excitation holds the key to the 
understanding of dynamical behavior of built-up structures under general periodic 
excitations.  
 
3.2 Fourier series representation of periodic functions 
 
Let y(t) be a periodic function with period T so that y(t+nT)=y(t) for n=1,2,… 
According to the theory of Fourier series, y(t) can be expressed in terms of a series 
given by 
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Here ./2 Tπω =  This representation is permissible when y(t) satisfies a set of general 
requirements and the series converges to y(t) at all points excepting the points at 
which the function y(t) has discontinuities: see  the book by Kreysizig (1990) for the 
relevant background. The quantities a0 and{ }∞=1, nnn ba are known as the Fourier 
coefficients of y(t). These coefficients can be evaluated using the equations 
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Furthermore, if y(t) is differentiable, we can write 
 

∑
∞

=

+−=
1

cossin)(
n

nn tnsnbtnnaty ωωωω&             …(3.3) 

where, the dot over y(t) represents the derivative with respect to time t. Figure 3.4 
shows the Fourier coefficients for the periodic function shown in figure 3.3. It may 
noted that figure 3.3 shows not only the measured base motion but also the base 
motion re-constructed using the Fourier series. 
 
3.3 Mathematical model 
 
The frame shown in figure 3.1 is idealized as a three-dof system as shown in figure 
3.5. The equation of motion for this system can be derived as follows: 
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Using the Fourier series representation for the base motion y(t), and its derivative, as 
in equations 3.1 & 3.3, one gets 
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The solution of equation 4 can be obtained by using the method of normal mode 
expansion; see Annexure A for the details of this method. Thus, we begin by solving 
the eigenvalue problem φωφ MK 2= , which leads to the natural frequencies { }nω and 
modal matrix Φ that has the following orthogonality properties: 
 

][& 2
n

tt diagKIM ω=ΦΦ=ΦΦ             …(3.6) 
Here the superscript t denotes the matrix transposition. It may be noted that the modal 
matrix here has been normalized with respect to the mass matrix. Furthermore, 
assuming that the damping matrix is such that the matrix ΦΦ Ct is also diagonal, one 
can uncouple the equations of motion given by equation 3.4. Thus, using the 
transformation ,zx Φ= it can be shown that the equation governing the nth generalized 
coordinate is given by  
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In the experimental study, it is reasonable to assume that the system is initially at rest, 
and, therefore, the initial conditions associated with the above equation becomes 

.0&0)0( == nn zz &  The solution of the above equation can be shown to be given by  
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In constructing this solution it has been noted that the right hand side of equation 7 
consists of a constant term and a summation of harmonic terms, and, also, that the 
system starts from rest. The solution, therefore, can be constructed by suitably 
combining the indicial response and harmonic response of a sdof system. Once the 
solution for the generalized coordinates are obtained, the displacement of the floors 
can be evaluated by using the transformation given by  
 

zx Φ=                 …(3.9) 
 
It is crucial to note in the conduct of this experiment that the transducers placed on the 
floors would measure the total displacement about an equilibrium position, while, the 
solution derived above, in the steady state, contains a zero frequency component, 
which needs to be removed before the theoretical results can be compared with the 
experimental observations on floor displacements. 
 
The necessary information needed to identify the parameters of the model in equation 
3.4 for the system shown in figure 3.1 has already provided in the description of the 
Experiment 1 and it will not be repeated here. 
 
3.4 Experimental procedure 
 
As has been noted already, the present experiment is a follow up of experiment 1, and 
therefore, the steps related to determination of mass, stiffness and damping matrices 
would not be repeated here. Table 3.1 provides the details of instruments to be used in 
the present study; the physical properties and details of the structure can be recorded 
in the format given in Tables 3.2 and 3.3 respectively. 
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3.4.1 Preliminary measurements 
 

1. Study the charts/manuals that accompany the sensors and the charge 
amplifiers and note down the sensor sensitivities, sensor mass and factors 
to convert the measured electrical signal into mechanical units; this 
depends upon the amplifier settings used- see Table 3.4. 

2. Derive the details of the structure mass, stiffness and damping matrices as 
per the details given in Experiment 1. 

 
3.4.2 Studies on 3-storyed shear beam model 
 

1. Arrange the experimental setup as shown in figures 3.1 & 3.6. Note that 
the accelerometer needs to be placed on slab in such a way that 
displacement along x-direction is picked up. 

2. Drive the motor at a fixed RPM. The RPM could be selected in the 
neighborhood of the first natural frequency of the system. In the studies 
conducted at IISc it was found desirable to avoid the resonant frequencies. 

3. Acquire the data on base motion and also the displacement of the three 
floors. 

4. Identify one repetitive cycle of the base motion and, using equation 3.2, 
derive the Fourier coefficients for the base motion. For this purpose one 
can suitably approximate the variation of the base motion over one cycle 
by a set of straight lines and derive the Fourier coefficients in closed form. 
Alternatively, one can directly use numerical integration tools to carry out 
the integrations appearing in equation 3.2. The latter option would 
necessitate the use of a suitable computer program. 

5. Once the Fourier coefficients are determined, determine the solution for 
the generalized coordinates using equation 3.8 and subsequently the floor 
displacements using the transformation .zx Φ=  

6. Isolate a segment containing about 10 cycles of oscillation from the 
solution derived above, and determine the time average of the 
displacement. The oscillatory motion about this average position can be 
determined by deducting this average from x(t). Compare the time 
histories of these oscillatory motions with the experimentally observed 
floor displacements. 

 
3.4 Report submission 

 
1. Derive equations 3.4-3.8. 
2. Document the experimentally observed time histories of base motion and floor 

displacements. 
3. Plot the spectrum of Fourier coefficients, that is, { } { }L

nn
L
nn ba 10 & == versus n. 

4. Reconstruct the support displacement using the Fourier series representation 
and compare it with the observed base motion. This comparison must provide 
a clue as to how many terms need to be retained in the Fourier expansion. 

5. Compute the floor displacement by using equations 3.8 & 3.9 and compare 
them with the corresponding experimental observations. Explain the 
differences (if any). 
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6. Respond to the following questions: 
(a) Are resonant type oscillations possible for structures under non-

harmonic periodic motions? 
(b) Can you device an excitation that would send the first three modes of 

the structure into resonance? 
(c) Can the Fourier series representation be generalized to include 

aperiodic functions? If so, what type of aperiodic functions admits this 
generalization? Consider if the summation in the Fourier series tends to 
an integral if the function becomes aperiodic. 

(d) Figure 3.7 shows the distribution of average power in loads caused due 
to wind, waves and earthquakes. Also shown in this figure are the 
typical ranges of natural frequencies of typical engineering structures. 
Study this figure and list five important conclusions that you can draw 
from this. 

 
                
3.5 Reference: 
 
1. E Kreyszig, Advanced Engineering Mathematics, Wiley Eastern Limited, 1990 
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Figure 3.1 Electric motor driven shake table showing the cam and follower 
arrangement for generating non-harmonic periodic base motions with the three storied 
building frame model mounted on it 

 
 

Figure 3.2 Close-up view of the follower-cam arrangement 
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Figure 3.3 Periodic base motion s with period =1.0328 s measured on the table. 
 

 
Figure 3.4 Plot of Fourier coefficients an & bn versus number of terms n 

(period=1.0328 s). 
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(a) 

 
(b) 

Figure 3.5 Multi mass-damper-spring model representation of a three-story shear 
building subjected to periodic base motion, y(t); (a) mathematical model (b) free body 

diagram. 

 
Figure 3.6 Set-up for studies on three-story shear building model; A1-A4 

Accelerometers 



 49

 
Figure 3.7 Spectral representation of wind, waves and earthquake loads on 

engineering  
 

Table 3.1 Equipments used in free vibration and forced vibration test of three-story 
shear building frame 

S.No. Equipments Quantity 
1 Oscilloscope 1 
2 Accelerometers 4 
3 Transducers conditioning amplifiers 1 
4 Shake table 1 

 

Table 3.2 Physical properties of parts of the structure 

Material Properties 
Sl. 
No. Part Material Mass 

kg 
Young’s 

Modulus (E) 
N/m2 

Mass density (ρ) 
kg/m3 

1 Column Aluminum Mc =   
2 Slab Aluminum Ms=   

3 Allen screw, 
M8 Steel Msc= - - 

 
 

Table 3.3 Geometric data of the structure 

Dimensions in mm Sl. No. Part Depth (D) Width (B) Length (L) 
1 Column DA = BA = LA = 
2 Slab DB = BB = LB = 
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Table 3.4 Details of the sensors used; CF: conversion factor 

Sensitivity, S Sl. No. Sensor pC/ms-2 pC/g CF Mass 
kg 

1      
2      
3      
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 Experiment 4 
 

Vibration isolation of a secondary system 
 

4.1 Background 
 
Vibration isolation is a means of controlling vibration by modifying the transmission 
path between source of excitation and the vibrating structure by introducing 
specifically designed structural elements. The design of these elements depends upon 
not only the dynamic properties of the structure being isolated but also on the nature 
of excitations. In this experiment we consider the three storied building frame model 
as shown in figures 4.1a and b. This frame houses an “equipment”, marked as A, 
which is designed to be much rigid in relation to the lateral stiffness of the frame. If 
this frame were to be subjected to dynamic base motions, the vibration response of the 
equipment would be very close to that of the slab on which it rests. We wish to reduce 
the vibration by mounting the equipment on an “isolator”, which is made up of a thin 
steel strip, as shown in figure 4.1c and d. The objective of this experiment is to 
understand how the dynamic behavior of the equipment changes due to the insertion 
of the isolator.  
 
4.2 Displacement Transmissibility Ratio 
 
Consider the mass m supported on the isolator spring k and damper c as shown in 
figure 4.2. Let the support be subjected to dynamic support displacement given by 

( )tit ωδ exp)( =Δ . In the absence of the isolator, that is, with k=0 and c=0, the 
displacement of the mass m would be equal to ( )tit ωδ exp)( =Δ . This situation is 
considered undesirable and we wish to remedy this by selecting k and c so that the 
displacement of m gets reduced. To understand how this can be done, we begin by 
writing the equation of motion 
 

( ) ( )ticikkxxcxm ωδω exp+=++ &&&             …(4.1) 
Here a dot represents derivative with respect to time. As ∞→t , we seek the solution 
in the form, ( ),)exp)( 0 tiXtx ω=  which leads to  
 
( ) ( )δωωω cikXkcim +=++− 0

2              …(4.2) 

Noting that the undamped natural frequency )/( mkn =ω , bandwidth mcn /2 =ηω , 
and frequency ratio ,/ nr ωω= the above equation can be re-written as 
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This equation represents the ratio of the amplitude of displacements of mass m with 
and without the presence of the isolator. The amplitude of this ratio, given by 
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is known as the displacement transmissibility ratio (DTR). Clearly, for the isolation to 
be effective, DTR<1. Figure 4.3 shows the plot of DTR versus r. It may be noticed 
that for 2>r , DTR<1 for all r. Thus 2>r  represents the region in which the 
isolation would be effective. 
 
4.3 Mathematical model 
 
Let us now consider the dynamics of structure shown in figure 4.1c and 4.1d. A 
preliminary single degree of freedom (sdof) model for the mass A and the isolator can 
be made by assuming that the dynamics of the isolated mass and the three-storied 
frame are dynamically uncoupled. This sdof system would have mass = mass of the 
isolated mass + mass of isolator spring participating in the vibration + mass of the 
accelerometer mounted on the mass to be isolated + mass of screws (used to assemble 
isolated mass and spring). The spring stiffness can be evaluated by using the 

formula 3

3
L
EIk = where E, I, and L, respectively, denote the Young’s modulus, 

moment of inertia and length of the isolator beam strip. A more detailed model can be 
made by assuming that the frame, along with the isolated mass, constitute a four 
degree of freedom system as shown in figure 4.4a. With the help of the free body 
diagram shown in figure 4.4b, the equation of motion for this system can be written as  
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This can be re-written using matrix notations as 
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The parameters of this model are established as follows: 
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11 4 sccs MMMm ++=  
accspbbsccs MMMMMMm +++++= *5.04 12  

13 *5.0*4 sccs MMMm ++=  
accspiso MMMm ++= *5.04 + 2scM                        …(4.7) 
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Here Mc= mass of a column, Msc1 (to clamp slab and column) = mass of screw1, Mbb= mass of 
the base block, Msp= mass of isolator beam strip, Miso= mass to be isolated, Macc= 
mass of the accelerometer, Msc2 (to clamp Miso and isolator beam strip) = mass of screw2, 
LC=length of the frame column, LE2= effective length of the isolator beam strip, 
BC,DC= respectively the breadth and depth of the frame column, and b,d= respectively 
the breadth and depth of the isolator beam strip.  Equation 4.6 can be solved using 
either the normal mode expansion method or by inverting the dynamic stiffness 
matrix; see Appendix A for the relevant background. Figure 4.5a and 4.5b shows 
typical plots of the response of second floor and the isolator mass when the base is 
subjected to harmonic base motion. Figure 4.5c displays the DTR for the isolator. 
 
4.4 Experimental procedure 
 
4.4.1 Instruments and sensors 
             
Table 4.1 provides the details of instruments and sensors to be used in the 
experimental study. 
 
4.4.2 Preliminary measurements 
 

a) Collect the data pertaining to geometric and material properties of the 
vibrating system (tables 4.2 and 4.3). Parts of data in table 4.2 have to be 
obtained from instructor/handbooks. 

b) Using the four-degrees of freedom model, form the mass and stiffness 
matrices of the structure. Perform the eigen value analysis and determine the 
natural frequencies and modal matrix for the system. Alternatively, a simpler 
sdof model, which takes into account only the mass-isolator system, could also 
be made. 

c) Study the charts/manuals that accompany the sensors and the charge 
amplifiers and note down the sensor sensitivities, sensor mass and factors to 
convert the measured electrical signal into mechanical units; this depends 
upon the amplifier settings used: see table 4.4. 

d) The amplitude of the base motion is expected to be constant for all motor 
RPMs. This can be verified at the outset by running the motor at different 
speeds and measuring the base motion. Once you are satisfied with this, you 
need not have to measure the displacement of the base in subsequent 
experimentation.  

 
 
4.4.3 Frame under harmonic base motions 

 
e) Arrange the experimental setup as shown in figures 4.7; also see figures 4.1c,d 

and 4.6. Note that the three accelerometers, one on base, one on II floor slab 
and one on the mass to be isolated, are mounted in such a way that 
displacement along x-direction is picked up. 

f) Set the frame into free vibration by applying an initial displacement. This can 
be achieved by gently pulling the frame at about the top slab and releasing it. 
Observe the free vibration decay on the oscilloscope and record the results as 
per the format given in table 4.5. Evaluate the logarithmic decrement and 
hence the damping ratio. One model for the damping can be obtained by 
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assuming that the damping ratio so determined would remain constant for all 
the modes. 

g) Run the base motion test on the frame at different values of motor RPM 
making sure that readings at resonant frequencies are not missed.  For a given 
motor RPM, allow the frame to oscillate for a few seconds so that the frame 
reaches its steady state. At this stage measure the amplitude of the frame 
response by using time history of displacement response acquired on the 
oscilloscope and record the amplitude data as in table 4.6. Note that the 
frequency of driving and the frequency of structural response can be assumed 
to be equal and this can be measured from the trace of displacement response 
on the oscilloscope. It may be noted that the test could be conducted even if 
only two channel measurements are possible, in which case, the above steps 
need to be repeated suitably.  

h) The frequencies at which the structure undergoes resonance can be identified 
by observing the variation of response amplitudes as motor RPM is varied. At 
resonant conditions, in addition to noting the amplitude of slab oscillations, 
also note if the slabs are vibrating in phase or not. Based on this information 
the modal vectors for the first three modes could be established. Compare 
these mode shapes with the analytical mode shapes obtained in step (b). 

i) Plot the variation of δ, X2, and X4 as the frequency of base motion, ω, is varied. 
Also plot X4 /X2 versus nωω / .  Here ωn is the modal frequency of the system 
in the mode in which the mode shape is dominated by the displacement of the 
isolator mass. If a sdof approximation is used, ωn can be taken to be the 
natural frequency of the mass-isolator system.  

j) From the plots in the previous step estimate the modal damping either by half-
power bandwidth method or by relating the peak amplitude to the modal 
damping (see the book M Paz, 1984, Structural dynamics, CBS Publisher, 
New Delhi,  for details). 

k) Using the modal damping ratios obtained in steps (f) or (j) determine the C 
matrix using the relation [ ] [ ] 11 ][ −−

ΦΞΦ= tC  where Ξ is a diagonal matrix with 

entry on the nth row being .2 nnωη  It can be shown that [ ] Φ=Φ
− Mt 1 and 

[ ] MtΦ=Φ −1 , and, therefore, one gets MMC tΦΞΦ= (see Appendix A). 
Using this C matrix and equation 4.6, solve the mathematical model to 
determine analytically the amplitude of floor responses as a function of the 
driving frequency.  

  
 
 
4.5 Report submission 

 
1. Document the experimental observations as per format given in tables 4.2-4.8. 
2. Develop the mathematical model as per the simplifications suggested in 

figures 4.2 and 4.4. 
3. Compare the experimentally observed plots of X2 versus f, X4 versus f and X4 

/X2 versus nωω /  with corresponding predictions from the mathematical 
model. Discuss the qualitative features of these plots and explain the mutual 
agreement /disagreement between theoretical and experimental results. 

4. Respond to the following questions: 
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1. If the mass to be isolated were to be mounted on a rubber pad, 

instead through a metal strip, as has been done in the present set 
up, what changes would you expect in the dynamic behavior of the 
mass? 

2. In the present set up, what role does the damping characteristic of 
the isolator beam strip play? Does it have a favorable influence in 
the process of isolation? What would happen if this damping were 
to be zero? 

3. Is the concept of vibration isolation useful in controlling vibrations 
induced by earthquakes on buildings? Frame your response 
keeping in mind the following facts: earthquake loads are transient 
in nature, these loads contain several frequency components, 
several modes of vibration could participate in structural vibration 
and the structure could behave nonlinearly in the event of a strong 
earthquake. 

4. Does base isolation of building frames produce any undesirable 
effects on the overall performance of the building in terms of its 
ability to carry other loads such as dead, live and wind loads? 

5. Items such as TV monitors, computer central processing units and 
such other electronic items, need to be carefully packaged while 
they are transported. What considerations are relevant in the design 
of these packages? 
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(a) 

 

(b) 

(c) 

 

 
(d) 

 
Figure 4.1 (a) Frame carrying mass A; (b) Direct mounting of the mass A on the slab; 

(c) Frame carrying mass A mounted on the isolator; (d) close view of the isolator. 
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Figure 4.2 Mass M being isolated from the base motion Δ(t) by spring K and damper 
C. 

 

 
  

      
       

 Figure 4.3  Displacement transmissibility ratio (DTR); region of successful isolation 
(DTR<1) lies to the right of 2=r ; also, note that for 2=r , DTR=1 for all values 
of damping ratio η ; for );()(,2 2121 ηηηη DTRDTRr >⇒>> and 

).()(,2 2121 ηηηη DTRDTRr <⇒><  
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(a) 

 

(b) 
Figure 4.4 (a) A 4-dof model for the frame in figures 4.1c and d; (b) Free body 
diagram of the four masses. 
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(a) (b) 

 

 

 
( c ) 

Figure 4.5 Amplitude and phase spectra of absolute responses of the frame in figures 
4.1c and d (a) response of II floor; (b) response of mass to be isolated; (c) 
Displacement transmissibility ratio. 
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Figure 4.6 Three-story shear building model with a mass, on second floor, to be isolated used in 
experiment; 1 column; 2 slabs; 3 base block; 4 spring (aluminum beam); 5 mass to be isolated 

 

 
Figure 4.7. Setup for studies on three-story shear building frame with a mass, on second floor, to be 

isolated 
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Table 4.1 Equipment used in free vibration and forced vibration test of frame in 
figures 4.1c and d 

No. Equipments Quantity 
1 Oscilloscope/Data acquisition system 1 
2 Accelerometer 3 
3 Charge amplifier/Transducers conditioner 3 
4 Shake table 1 

 

Table 4.2 Physical properties of parts of the structure 
Material Properties 

No. Part Material 

Mass  kg 
 Young’s 

Modulus (E) 
N/m2 

Mass density (ρ) 
kg/m3 

1 Column Aluminum Mc =    
2 Slab Aluminum Ms=    

3 Allen screw, 
M8 Steel Msc1=   

4 Allen screw, 
M3 Steel Msc2=   

5 Base block Aluminum Mbb=   

6 Spring (Al 
strip) Aluminum Msp

*=   

7 Mass to be 
isolated Aluminum Miso=   

8 
Mass of 

accelerometer 
 

- Macc=   

* Msp = ρ*d*b*L2 

Table 4.3 Geometric data of the structure 

Dimensions in mm 

No. Part  Depth (D)
Width 

(B) 
 

Length 
(L) 

Effective 
length  

1 Column DC = 
 
BC = 
 

LC = - 

2 Slab DS = BS = LS = - 
3 Base block Dbb = Bbb = Lbb = - 
4 Spring (Al strip) d = b = L2 = LE2 = 
5 Mass to be isolated Diso = Biso = Liso = - 

 

Table 4.4 Details of the sensors used; CF: conversion factor 

Sensitivity, S No. Sensor pC/ms-2 pC/g CF Mass 
kg 

1      
2      
3      
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Table 4.5 Free vibration test data on three-story shear building frame with a mass, on 
second floor, to be isolated 

No. Quantity Notation Observations 
1 Amplitude of 0th peak A0  
2 Amplitude of nth peak An  
3 Number of cycles n  
4 Logarithmic decrement δ  
5 Damping ratio ζ  

 

Table 4.6 Base motion test data on frame in figures 4.1c and d  
(This table can be used if all responses are measured simultaneously) 

No. Frequency, 
f 

(Hz) 

Frequency 
ω=2πf 
(rad/s) 

Amplitude 
σ1 

rms (mm) 

Amplitude 
σ2 

rms (mm) 

Amplitude 
σ3 

rms (mm) 

Displacement 
Amplitude 

Y = 
2 (CF) σ1 
(mm)  

Displacement 
Amplitude 

X2 = 
2 (CF) σ2 

(mm) 

Displacement 
Amplitude 

X4 = 
2 (CF) σ3 

(mm) 
1         
2         
3         
4         
5         
6         
7         
8         
9         

10         
11         
12         
13         
14         
15         
16         
17         
18         
19         
20         

 

Table 4.6.1 Base motion test data on frame in figures 4.1c and d 

 (measurement made on ground floor) 

S.No. Frequency, 
f 

(Hz) 

Frequency 
ω=2πf 
(rad/s) 

Amplitude 
σ1 

rms (mV) 

Displacement 
Amplitude 

Y= 2  (CF) σ1 
(m)  

1     
2     
3     
4     
5     
6     
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7     
8     
9     

10     
11     
12     
13     
14     
15     
16     
17     
18     
19     
20     
21     
22     
23     
24     
25     

 

Table 4.6.2 Base motion test data on frame in figures 4.1c and d  
(measurement made on second floor)  

S.No. Frequency, 
f 

(Hz) 

Frequency 
ω=2πf 
(rad/s) 

Amplitude 
σ2 

rms (mV) 

Displacement 
Amplitude 

X2= 2  (CF) σ2 
(m)  

1     
2     
3     
4     
5     
6     
7     
8     
9     

10     
11     
12     
13     
14     
15     
16     
17     
18     
19     
20     
21     
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22     
23     
24     
25     

 

Table 4.6.3 Base motion test data on frame in figures 4.1c and d 
(measurement made on the mass to be isolated) 

S.No. Frequency, 
f 

(Hz) 

Frequency 
ω=2πf 
(rad/s) 

Amplitude 
σ3 

rms (mV) 

Displacement 
Amplitude 

X4= 2  (CF) σ3 
(m)  

1     
2     
3     
4     
5     
6     
7     
8     
9     

10     
11     
12     
13     
14     
15     
16     
17     
18     
19     
20     
21     
22     
23     
24     
25     

*Tables 4.6.1 to 4.6.3 can be used if there is only one accelerometer and each response is measured 
individually 
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Table 4.7 Frequency ratio and the displacement transmissibility 

No. Frequency ratio
f / fn 

 

Amplitude ratio
X4 / X2 

 
1   
2   
3   
4   
5   
6   
7   
8   
9   
10   
11   
12   
13   
14   
15   
16   
17   
18   
19   
20   
21   
22   
23   
24   
25   

 

Table 4.8 Estimate of the natural frequencies of the frame in figures 4.1c and d  

Natural frequencies in Hz Mode No. 4-DOF Model Experiment  
1   
2   
3   
4   
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Experiment 5 
 

Dynamics of a vibration absorber 
 
 

5.0 Background 
 
Dynamic vibration absorber (DVA), also known as the mass tuned damper, is an 
auxiliary vibrating element attached to a primary vibrating system with a view to 
reduce the vibrations of the primary system. The Stockbridge dampers attached to 
transmission cable lines (figure 5.1) are classical examples for a DVA. These dampers 
are used to reduce the wind-induced oscillations of cables and thereby extending the 
fatigue life of the cables. The principle of DVA is widely discussed in many books: 
see for instance, the book by J P Den Hartog (Mechanical Vibrations, 1986, Dover 
Publications, NY, pp. 87-106).  
 
To illustrate the working of the DVA, let us begin by considering a harmonically 
driven single degree of freedom (sdof) system (figure 5.2). Let us call this system as 
the primary system. Let us assume that the harmonic driving of the system is near the 
system natural frequency so that )/( MKn =≈ ωω , and resonant conditions 
prevail. In case the amplitude of response of mass M is considered unacceptably high, 
what can we do to control the vibration? A straightforward answer to this question 
would be to alter K, M and/or C so that either we avoid resonant conditions or we 
limit the resonant amplitude to acceptable limits. This would essentially mean that we 
are re-designing the system. This, of course, is not possible if we have already 
produced the vibrating system. In such a situation, we would rather like to modify the 
existing system to achieve the desired vibration control. To see how this can be done, 
let us add an auxiliary spring-mass system to the primary system (figure 5.3). This 
modification would clearly alter the dynamics of the system: thus, for instance, the 
system would now have two natural frequencies. Consequently, the dynamic response 
of mass M would now be altered. Can this alteration be to the advantage of mass M? 
Or, in other words, can we select k and m so that the undesirably high response of 
mass M, that prevailed before addition of k and m, can now be reduced to acceptable 
levels? This indeed is possible, and, to see this, we write the equation of motion 
governing the systems shown in figures 5.2 and 5.3 respectively as 
 

tiFeKxxCxM ω=++ &&&                                                                                           … (5.1) 
 
and 
 

tiFezykKyyCyM ω=−+++ )(&&&                                            
0)( =−+ yzkzm &&                                                                                                   …(5.2)  

 
The steady state amplitude of response of these systems are obtained respectively as 
 

)(
)( 2 KCiM

FX
++−

=
ωω

ω                                                                                  …(5.3) 
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and 

222
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)])([(
)()(

kkmkKCiM
kmFY

−+−+++−

+−
=

ωωω
ωω  

222 )])([(
)(

kkmkKCiM
FkZ

−+−+++−
=

ωωω
ω                                                           …(5.4)  

 
Figure 5.4 shows typical plots of amplitude and phase of X (ω), Y (ω) and Z (ω). It 
can be observed from equation (5.4) that, when the condition k-mω2=0 is satisfied, the 
response amplitude of mass M, Y (ω), becomes zero. Indeed the plots shown in figure 
5.4b reveal that at )/( MKn =≈ ωω , the response of mass M becomes zero. This 
means that if we can “tune” the “absorber” mass and stiffness such that the condition 
k-mω2=0 is satisfied, we could succeed in dramatically reducing the vibration levels 
of the primary system. This, in essence, is the principle of working of DVA. 
 
5.1 Experimental setup 
 
Figures 5.5a and 5.5b show the experimental setup. This consists of a steel clamped 
beam A (primary system) that is driven harmonically by an electric motor (B) with 
two flywheels (C) that carry eccentric masses (D). The absorber system consists of an 
aluminum beam (G) with two symmetrically placed discrete masses (H), which is 
connected to the primary system through the rod F. The system is configured such 
that the rod F and the absorber beam G can be detached from the primary beam. The 
motor with imbalance provides harmonic excitations to the primary beam. By varying 
the speed of the motor, one can vary the frequency of this excitation. Similarly by 
changing the eccentricity and/or the eccentric mass on the flywheels, one can also 
vary the amplitude of the excitation. 
 
5.2 Mathematical model 
 
The structure shown in figure 5.5 can be idealized as shown in figure 5.6a. The model 
consists of two beams; the primary beam has a flexural rigidity E1I1 and mass per unit 
length m1. The motor assembly is modeled as a point mass Mt and is placed at the mid-
span of the primary beam. The detachable rod F is taken to be rigid and the absorber 
system is modeled as a double cantilever beam with flexural rigidity E2I2 and mass 
per unit length m2. The discrete masses H are modeled as point masses. Furthermore 
the system shown in figure 5.6a is approximately modeled as a 2-dof system as shown 
in figure 5.6b. The parameters of this model are established as follows. 
 

3
1

11192

eL
IE

K = ; 3
2

223
2

eL
IE

k =  

M=MAeff+Mt+MF+mac1 
Mt=MB+MC+2MD+ME 
m=MGeff +2MH+mac2                                                                                            …(5.5) 
 
Here masses MAeff and MGeff are the equivalent masses of beams A and G respectively; 
Mt is the total mass of the motor assembly consisting of mass of the motor body (MB), 
flywheels (MC), connecting plate (ME) and discrete masses (MD); mac1 and mac2 are the 
accelerometer masses. To compute MAeff and MGeff one need to consider the effective 
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mass participating in vibration. To approximate this, we note that the deflection of a 
fixed-fixed beam due to a concentrated load at mid-span is given by 
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The maximum kinetic energy of the beam itself is then  
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The effective mass for the beam at mid-span is then equal to 
 
MAeff=0.3714m1Le1                                                                                                        …(5.8) 

 
Similarly, by using the deflection profile of the form 
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an approximation to the equivalent mass for the cantilever beam in the absorber 
portion is obtained as 
 

)(2357.0 22 LmM Geff =                                                                                           …(5.10) 
 
The equivalent stiffness of the clamped beam is obtained by noting that the mid-span 
deflection under a central unit concentrated load is )192/(3 EIL . Similarly, the 
equivalent stiffness for the cantilever beam is obtained by noting that the tip 
deflection under a unit concentrated load at tip is )3/(3 EIL . Finally, it may be noted 
that when the primary system alone is to be analyzed, the model shown in figure 5.7 
can be employed. 
 
5.3 Experimental procedure 
 
5.3.1 Instruments and sensors 
             
            Table 5.1 provides the details of instruments to be used in the experimental 
study. 
 
5.3.2 Preliminary measurements 

 
• Collect the data pertaining to geometric and material properties of the vibrating 

system (tables 5.2 and 5.3). Parts of data in table 5.2 have to be obtained from 
instructor/handbooks. 

• Study the charts/manuals that accompany the sensors and the charge amplifiers 
and note down the sensor sensitivities, sensor mass and factors to convert the 
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measured electrical signal into mechanical units; this depends upon the amplifier 
settings used- see table 5.4. 

 
5.3.3 Studies on primary beam without absorber 

 
• Arrange the experimental setup as shown in figure 5.8. Note that the 

accelerometer needs to be placed as close as possible at mid-span of the primary 
beam. 

• Set the beam into free vibration by applying an initial displacement. This can be 
achieved by gently pulling down the beam at about the mid-span and releasing it. 
Observe the free vibration decay on the oscilloscope and record the results as per 
the format given in table 5.5. Evaluate the logarithmic decrement and hence the 
damping ratio. 

• Run the forced vibration test on the beam at different values of motor RPM.   
• For a given motor RPM, allow the beam to oscillate for a few seconds so that the 

beam reaches its steady state. At this stage measure the amplitude of the beam 
response by using time history of displacement response acquired on the 
oscilloscope and record the amplitude data as in table 5.6. Note that the frequency 
of driving and the frequency of structural response can be assumed to be equal and 
this can be measured from the trace of displacement response on the oscilloscope. 

• Plot the X/F versus f and compare this plot with the results from mathematical 
model of the structure shown in figure 5.8 (see equations 5.1 and 5.3). 

 
5.3.4 Studies on combined system of primary beam and DVA 

 
• Arrange the experimental setup as shown in figure 5.9. 
• Conduct the free vibration test as in section 5.3 and record the results in the format 

given in table 5.7. To a first approximation take ξ to be the average of the values 
obtained in columns 4 and 5 of the table 5.7. In the analysis of the mathematical 
model (figure 5.6b) the two modes of the system may be assumed to have the 
same damping ratio of ξ. 

• Run the forced vibration test on the combined system at different motor RPM. For 
a given motor RPM, allow the system to oscillate for a few seconds so that the 
system reaches its steady state. At this stage measure the amplitudes of both 
primary beam and absorber beam responses by using the time history of 
displacement responses acquired on the oscilloscope and record the amplitude 
data as in tables 5.8 and 5.9. Note that the frequency of driving and the frequency 
of structural response can be assumed to be equal and this can be measured from 
the trace of displacement response on the oscilloscope. 

• Plot Y/F versus f and Z/F versus f. Compare these results with that obtained from 
mathematical model of the structure shown in figure 5.9 (see equations 5.2 and 
5.4). 

 
5.4 Report submission 

 
1. Document the experimental observations as per format given in tables 5.2-5.9. 
2. Develop the experimental model as per the simplifications suggested in figures 

5.6 and 5.7. 
3. Compare the experimentally observed plots of X/F versus f, Y/F versus f and 

Z/F versus f with corresponding predictions from the mathematical model. 
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Discuss the qualitative features of these plots and explain the mutual 
agreement/disagreement between theoretical and experimental results. 

4. Respond to the following questions: 
(a) How do you assess the effectiveness of the vibration absorber in the 

present study? 
(b) Comment on the design of the absorber system and point out 

deficiencies, if any. 
(c) Do you think the principle of vibration absorber has potential 

application in earthquake engineering? Discuss. 
(d) Give a few examples of engineering systems in which the principle of 

DVA has been used. 
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Figure 5.1 Stockbridge damper attached to a transmission cable line 

(http://www.dulhunty.com/an5.htm) 
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Figure 5.2 Harmonically driven sdof system: f (t)=Feiωt 
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K

C

m
k
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Figure 5.3 Addition of auxiliary spring and mass elements to the primary system:  f 
(t)=Feiωt 
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(a) 

 
(b) 

 
(c) 

 
Figure 5.4 Amplitude and phase spectra of response of harmonically driven systems; 
(a) response of sdof system; (b) response of primary system in the 2-dof system; (c) 
response of secondary system in the 2-dof system. 
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Figure 5.5a Experimental setup for DVA 
 
 
 
 
 
 
 
 

 
Figure 5.5b Schematic diagram of experimental setup for DVA 
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(b) 

 
Figure 5.6 Modeling of the primary beam and absorber beam system; (a) physical 
model; Mt: mass of motor assembly and connecting rod;  (b) a 2-dof mathematical 
model. 
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(b) 

Figure 5.7 Modeling of the primary beam alone; (a) physical model; Mt: mass of 
motor assembly; (b) sdof mathematical model 

 
 
 
 

 
 

Figure 5.8. Setup for studies on primary beam (without absorber beam). 
 
 
 
 
 

 
 

Figure 5.9. Setup for studies on combined system of primary beam and absorber 
beam. 
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Table 5.1 Equipments used in free vibration and forced vibration test of DVA 
 

S.No. Equipments Quantity 
1 Oscilloscope 1 
2 Accelerometers 2 
3 Transducers conditioning amplifiers 2 
4 Regulated DC power supply 1 

 

Table 5.2 Physical properties of parts of the structure 

Mass kg Material Properties Notat
ion Part Material Formula Value Young’s Modulus 

(E) N/m2 
Mass density 

(ρ) kg/m3 

A Main Beam Mild Steel ρ*D1*B1*
Le1 

MA =  2.10E+11 7800 

B D.C. Motor - 
C Fly wheel Aluminum 

- MB+MC =  0.69E+11 2700 

D Eccentric mass Mild Steel - MD = 
 2.10E+11 7800 

E Connecting 
plates Mild Steel - ME = 2.10E+11 7800 

F Connecting rod Mild Steel ρ*Dc*Bc*
Lc MF =  2.10E+11 7800 

G  Absorber beam Aluminum ρ*D2*B2*
L2 

MG =  0.69E+11 2700 

H Mass on 
absorber beam Mild Steel ρ*(pi*DG

2

/4)*TG  MH =  2.10E+11 7800 

ac1 Accelrometer1 - - Mac1=  - - 
ac2 Accelrometer2 - - Mac2=  - - 

 

Table 5.3 Geometric data of the structure 

Dimensions in mm Part 
Depth (D) Width (B) Length (L) Effective Length (Le) 

 Main beam D1= B1 = L1 = Le 1=  
 Absorber beam D2= B2 = #L2= Le 2 =  
Connecting rod Dc = Bc = Lc = - 

Diameter  (DG )  Mass on absorber 
beam Thickness (TG )  
Eccentricity of eccentric mass on the flywheel, e=50 mm 
 #The absorber is modeled as a cantilever beam. The total length of the absorber beam is 2*L2 

 

Table 5.4 Details of the sensors used; CF: conversion factor 

Sensitivity, S 
Sl. No. Sensor 

pC/ms-2 pC/g 
CF Mass 

kg 
1      
2      

 

Table 5.5 Free vibration test data on primary beam (without absorber) 

S.No. Quantity Notation Observations 
1 Amplitude of 0th peak A0  
2 Amplitude of nth peak An  
3 Number of cycles n  
4 Logarithmic decrement δ  
5 Damping ratio ζ  
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Table 5.6 Forced vibration test data on primary beam (without absorber) 

S.No. Frequency, 
f 

(Hz) 

Frequency 
ω=2πf 
(rad/s) 

Amplitude 
σ 

rms (mV) 

Amplitude 
X = 2  (CF) 

σ 
(m)  

Force, 
F=2MD eω2 

(N) 

Receptance 
X/F 

(m/N)  

1       
2       
3       
4       
5       
6       
7       
8       
9       
10       
11       
12       
13       
14       
15       
16       
17       
18       
19       
20       

 

Table 5.7 Free vibration test data on combined system. 

S.No. Quantity Notation Observations on 
primary beam 

Observations on 
absorber beam 

1 Amplitude of 0th peak A0   
2 Amplitude of nth peak An   
3 Number of cycles n   
4 Logarithmic decrement δ   
5 Damping ratio ζ   

Average value of damping ratio, ζ=  
 

Table 5.8 Forced vibration test data on combined system; measurement made on main beam 

S.No. Frequency, 
f 

(Hz) 

Frequency 
ω=2πf 
(rad/s) 

Amplitude 
σ 

rms (mV) 

Amplitude 
Y = 2  (CF) 

σ 
(m)  

Force, 
F=2MD eω2 

(N) 

Receptance 
Y/F 

(m/N)  

1       
2       
3       
4       
5       
6       
7       
8       
9       

10       
11       
12       
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13       
14       
15       
16       
17       
18       
19       
20       
21       
22       
23       
24       
25       

 

Table 5.9 Forced vibration test data on combined system; measurement made on absorber beam 

S.No. Frequency, 
f 

(Hz) 

Frequency 
ω=2πf 
(rad/s) 

Amplitude 
σ 

rms (mV) 

Amplitude 
Z = 2  (CF) 

σ 
(m) 

Force, 
F=2MD eω2 

(N) 

Receptance 
Z /F 

(m/N)  

1       
2       
3       
4       
5       
6       
7       
8       
9       

10       
11       
12       
13       
14       
15       
16       
17       
18       
19       
20       
21       
22       
23       
24       
25       
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EXPERIMENT 6 
 

Dynamics of a four storied building model with and without an open 
ground floor 

 
6.0 Background 
 
IS 1893 2002 defines a soft story as the story in which lateral stiffness is less than 
60% of that in the story above or lass than 70% of the average lateral stiffness of the 
three stories above. Buildings with soft stories often occur in practice in multi-storied 
buildings in which the ground floor has an open configuration so as to facilitate 
vehicle parking. Such buildings are often vulnerable to earthquakes [see C V R 
Murty, 2005, IITK BMTPC Earthquake Tip 21, Why are open-ground storey 
buildings vulnerable in earthquakes, NICEE Publication, Kanpur]. There have been a 
large number of instances in which such structures have suffered severe damage or 
even collapsed during major earthquakes.  
 
The objective of the present experiment is to understand the dynamical behavior of a 
four-storied building frame model with an open ground floor. To achieve this we 
consider two frames that are identical in all aspects excepting the fact that one of them 
has an open ground floor and the other not. Figure 6.1 shows the two frames under 
study. We use a set of aluminum plates to mimic the action of walls. In frame 6.1a the 
ground floor has no partition walls while in 6.1b they are present. Because of the 
absence of walls in 6.1a the lateral stiffness of the ground floor becomes much less 
than that in other floors and hence the floor is considered to be a soft floor. Figure 6.2 
provides the details of the frame structure under consideration. In this experiment we 
study the natural frequencies, mode shapes and dynamic response under harmonic 
base motion of the two frames shown in figure 6.1 and analyze the difference in their 
behavior. 
 
6.1 Mathematical model 
 
The frames shown in figure 6.1 are approximated by a four-dof shear beam models as 
shown in figure 6.3. It may be noted that the two frames in figure 6.1 can be modeled 
mathematically by using similar models. The parameters m1, k1 and c1 however, 
would be different for the two models. Based on the free body diagrams shown in 
figure 6.3b the following equations of motion can be setup for the system in figure 
6.3a: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) 0

0
0

0

34434444

43423343423333

32312232312222

212112121111
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=−+−+−+−+
=−+−+−+−+

=−+−+−+−+
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&&&&&&
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&&&&&&

      …(6.1) 

 
 
The equation can be cast in the matrix form as  
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In a more compact form, the equation reads 
 
[ ]{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ } gg xKxCxKxCxM Γ+Γ=++ &&&&           …(6.3) 
 
Here Γ is a column vector of ones of size .14×  It may be recalled that in Experiment 
1 we have analyzed this type of models and also have discussed the methods to 
determine the parameters of the models. Here, while the analysis procedure remains 
the same, the method for determination of model parameters, especially, the stiffness 
parameters{ }4

1=i
k , becomes complicated due to presence of the stiffeners that 

represent the partition walls. To circumvent this difficulty, we propose to evaluate the 
inter-storey stiffness by studying a single storey frames as shown in figure 6.4 and 
6.5. Here we excite the single storey frames by harmonic base motions and determine 
the frequency nω at which the resonance occurs. By estimating the mass participating 
in vibration, the inter-storey stiffness can be evaluated by using the 
formula MK n

2ω= . Clearly, in evaluating the mass participating in vibration, the 
presence (or absence) of partition walls need to be taken into account. Thus, by 
denoting the stiffness of a frame with open storey as openK and frame with closed 
storey as closeK , we can determine now the parameters of the model in equation 6.2. 
Thus one gets, for frame with open ground floor closeopen kkkkkk ==== 4321 ;  and 
for frame with closed ground floor, .4,3,2,1; == ikk closei  Similarly, m1 = 
Mc+Ms+0.5(Msa+Msb) or m1 = Mc+Ms+ (Msa+Msb) depending on whether the 
structure has soft first storey or not. The other mass parameters are determined as 
 
m2 = Mc+Ms+ (Msa+Msb); 
m3 = Mc+Ms+ (Msa+Msb); 
m4 = 0.5Mc+Ms+0.5(Msa+Msb)                                                                             …(6.4) 
 
Here Mc=mass of columns, Ms=mass of slabs, Msa=mass of stiffner A, Msb=mass of 
stiffener B; see figure 6.2 and Table 6.1.  
 
The undamped natural frequencies and modal vectors can be computed for the 
mathematical model by solving the eigenvalue problem .2 φωφ MK =  These 
solutions, in turn, can be used to evaluate the forced response analysis by assuming 
that the undamped modal matrix would diagonalize the damping matrix also. 
Alternatively, solution to equation 6.3 can also be constructed by noting that, under 
harmonic excitations, the system would respond harmonically at the driving 
frequency as time becomes large. Accordingly, when ]exp[)( tiXtx gg ω= we can take 
the solution to be of the form ]exp[)()( tiXtx ωω= as ∞→t . This leads to  
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{ } [ ] [ ]{ } gXKCiKCiMX Γ+++−=

−
ωωωω

12)(                                                              …(6.5) 
 
The matrix [ ]KCiM ++− ωω 2  can be thought of as the stiffness matrix of the 
structure that includes the effects of mass and damping and therefore, is referred to as 
the dynamic stiffness matrix. Refer to Appendix A for details on response analysis 
using normal mode expansion. 
 
The evaluation of damping matrix generally presents greater difficulty. Here one 
could estimate the modal damping values by performing either the logarthimic 
decrement test or by using the half-power bandwidth method.  
 
Figure 6.6 illustrates the first mode shape for the frame structure with and without 
open ground floor. From the mode shapes it could be observed that, for frame with 
open ground floor, the deformation is mainly concentrated in the ground floor. 
Consequently, the columns in the ground floor would attract higher loads. If these 
columns are not adequately designed to take into account these increased demands, 
they are susceptible to failure. The failure of ground floor columns has catastrophic 
consequence to the building no matter how strong the building parts are at higher 
elevations. In contrast, the mode shape for frame without open ground floor shows no 
abrupt changes in the mode shape thereby indicating no likelihood of load 
concentration in columns at different floors.  
 
6.2 Experimental procedure 
 
6.2.1 Instruments and sensors 
             

Table 6.1 provides the details of instruments to be used in the experimental 
study. 
 

6.2.2 Preliminary measurements and analysis 
 

1) Collect the data pertaining to geometric and material properties of the two 
frames (tables 6.2 and 6.3). Parts of data in table 6.2 have to be obtained from 
the instructor/handbooks.  

2) Study the charts/manuals that accompany the sensors and the charge 
amplifiers and note down the sensor sensitivities, sensor mass and factors to 
convert the measured electrical signal into mechanical units; this depends 
upon the amplifier settings used- see table 6.4. 

3) Mount the one-storey frames on the shake table as shown in figure 6.4 and 6.5. 
Excite the frames by harmonic base motion by varying the driving frequency. 
At every instance of change in frequency ensure that the system reaches steady 
state by allowing the frame to oscillate for about 30-50 cycles. Determine the 
frequency at which resonance occurs. A simpler alternative would be to set the 
frame structures into free vibration by gently pulling the slab and releasing it. 
From the trace of the free vibration decay one could not only estimate 
damping but also approximately determine the natural frequency. If you use 
this alternative record your observations as per format in Table 6.5a and b. 
The damping value obtained in this step, could, to a first approximation, be 
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used as modal damping values for the four storied frame structures under 
study. 

4) Estimate the inter-story stiffness for open and closed stories using the data on 
natural frequency obtained in the previous step. 

 
5) Determine all the parameters of the stiffness and mass matrices for the two                  

four storied frames. Perform the free vibration analysis and determine the 
natural frequencies and mode matrix. 

 
6.2.3 Four storied frames under harmonic base motion 
 

1) Arrange the experimental setup as shown in figures 6.7a and b; also see figure 
6.1. Note that the accelerometer needs to be placed on the slab in such a way 
that displacement along x-direction is picked up. 

2) Set the frame into free vibration by applying an initial displacement. This can 
be achieved by gently pulling the frame at about the top slab and releasing it. 
Evaluate the logarithmic decrement and hence the damping ratio. One model 
for the damping can be obtained by assuming that the damping ratio so 
determined would remain constant for all the modes. 

3)  Run the base motion test on the frame at different values of motor RPM 
making sure that readings at resonant frequencies are not missed.  For a given 
motor RPM, allow the frame to oscillate for a few seconds so that the frame 
reaches its steady state. At this stage measure the amplitude of the frame 
response by using time history of displacement response acquired on the 
oscilloscope and record the amplitude data as in tables 6.6 and 6.7. Note that 
the frequency of driving and the frequency of structural response can be 
assumed to be equal and this can be measured from the trace of displacement 
response on the oscilloscope. It may be noted that the test could be conducted 
even if only two channel measurements are possible, in which case, the above 
steps need to be repeated suitably.  

4)  The frequencies at which the structure undergoes resonance can be identified 
by observing the variation of response amplitudes as motor RPM is varied. At 
resonant conditions, in addition to noting the amplitude of slab oscillations, 
also note if the slabs are vibrating in phase or not. Based on this information 
the modal vectors for the first three modes could be established. Compare 
these mode shapes with the analytical mode shapes obtained in step 6.2.2.5. 

5) Plot  { }4
1=i

X  versus f.  
6)  From the plots in the previous step estimate the modal damping either by half-

power bandwidth method or by relating the peak amplitude to the modal 
damping (see M Paz, 1984, Structural dynamics, CBS Publishers, New Delhi, 
for details). 

7)   Using the modal damping ratios obtained in steps (c),(g) or (k) determine the 
C matrix using the relation [ ] [ ] 11 ][ −−

ΦΞΦ= tC  where Ξ is a diagonal matrix 

with entry on the nth row being .2 nnωη  It cn be shown that [ ] Φ=Φ
− Mt 1 and 

[ ] MtΦ=Φ −1 , and, therefore, one gets MMC tΦΞΦ= (see Appendix A). 
Using this C matrix and equation 6.3, solve the mathematical model to 
determine analytically the amplitude of floor responses as a function of the 
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driving frequency. Compare these analytical predictions with the measured 
frequency response functions. 

 
6.2.4 Report submission 
 

1. Document the experimental observations and the deductions as per the 
format given in tables 6.2-6.9. 

2. Develop the mathematical model as per the simplifications suggested in 
figure 6.3. 

3. Document the plots of floor response amplitudes as a function of the 
driving frequency obtained using analysis as well as experiment. Discuss 
the qualitative features of these plots. Explain the mutual 
agreement/disagreement between theoretical and experimental results. 

4. Discuss the difference in the displacement behavior of the frames with and 
without open ground floor. 

5. Estimate the forces in the different columns (that is, spring forces in figure 
6.3) as a function of driving frequency for the two frames. Discuss the 
nature of these forces. 

6. Respond to the following questions 
 

a. In the present study we have studied the effect of having a soft 
storey in the ground floor. What would happen if intermediate 
stories happen to be soft stories? 

b. Often soft stories also tend to be weak stories. That is, just as they 
are deficient in stiffness they could also be deficient in strength. 
Discuss qualitative nature of seismic response of a frame that has a 
weak and a soft ground floor. 

c. Do you foresee any problems in the frame behavior if instead of 
stiffness being irregularly distributed, the mass is irregularly 
distributed. 

d. In this experiment we have studied the effect of irregular 
distribution of stiffness in building elevation. In experiment 2 we 
have studied the effect of irregular distribution of stiffness and/or 
mass in plan. Discuss qualitative behavior under earthquake loads 
of a multi-storey frame that has unsymmetric plan and has soft 
ground storey.  
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(a) 

 

 
(b) 

 
Figure 6.1 Model for a four-storied building frame; (a) frame with a open ground 
floor; (b) frame with a “closed” ground floor. 
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Figure 6.2 Details of the building frame. 
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(a) 

 
(b) 

Figure 6.3 Model for the dynamics of frames (a) a four dof shear beam model; (b) free 
body diagrams.  
 
 
 
 
 

 
(a) 

 

 

 
(b) 

Figure 6.4 Setups for measuring inter-storey stiffness; (a) open floor; (b) closed floor. 
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(a) 

 
 

 
(b) 

 
 
Figure 6.5 Measurement of inter-storey stiffness by measuring first natural frequency; 
(a) open floor; (b) closed floor; the frames would be subjected to harmonic base 
motions in the x-direction. 
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(a) 

 
 

 
(b) 

Figure 6.6 Fundamental mode shape of the four storey frame using finite element 
analysis; (a) structure with soft first storey; (b) structure without soft first storey; note 
that the stiffeners here have been modeled using shell elements.  
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(a) 

 
(b) 

 
 

 
Figure 6.7 Setup for harmonic base motion test (a) frame with open ground floor; (b) 

frame with closed ground floor. 
 
 

 
 
 



 90

 
 

Table 6.1 Equipments used in  forced vibration test of four-story shear building frame 
 

Sl.No. Equipments Quantity 
1 Accelerometers 4 
2 Nexus conditioning amplifier 1 
3 Shake Table 1 
4 Data Acquisition System  1 

 
 

Table 6.2 Physical properties of parts of the structure 
Material Properties Sl. 

No. Part Material Mass 
kg Young’s Modulus (E) 

N/m2 
Mass density (ρ) 

kg/m3 
1 Column Aluminum Mc =    
2 Slab Aluminum Ms =   
3 Stiffener A Aluminum Msa =   
4 Stiffener B Aluminum Msb =   

 
 

Table 6.3 Geometric data of the structure 
 

Dimensions in mm Sl. 
No. 

Part 
Depth Width Length 

1 Slab    
2 Column    
3 Stiffener A    
4 Stiffener B    

 
 

Table 6.4 Details of the sensors used 
 

Sensitivity, S Sl. 
No. Sensor 

mV/ms-2 mV/g 
Mass 
gm 

1     
2     
3     
4     

 
Table 6.5a Free vibration test data for the one storey structure without walls 

 
S.No. Quantity Notation Observations 

1 Amplitude of 0th peak A0  
2 Amplitude of nth peak An  
3 Number of cycles n  
4 Logarithmic decrement δ  
5 Damping ratio ζ  
6 Experimental Frequency f  

7 Total mass (SDOF 
approximation) 

M1  

8 Stiffness (from experiment) Kexp  
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Table 6.5b Free vibration test data for the one storey structure with walls 
 
 

S.No. Quantity Notation Observations 
1 Amplitude of 0th peak A0  
2 Amplitude of nth peak An  
3 Number of cycles n  
4 Logarithmic decrement δ  
5 Damping ratio from modal 

analysis 
ζ  

6 Experimental Frequency fs  

7 Total mass (SDOF 
approximation) 

M2  

8 Stiffness (from experiment) Kexps  
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Table 6.6 Base motion test data on four storey building frame with soft first storey 

Sl.no 
  
  
  
  

Frequency 
  

(Hz) 
  
  

Base motion 
Amplitude 
σx*10-4 
rms (V) 

First floor 
Amplitude  
σx1*10-4 
rms (V) 

Second floor 
Amplitude  
σx2*10-4 
rms (V) 

Third floor 
Amplitude 
σx3*10-4 
rms (V) 

Base motion 
Displacement 

Amplitude 
X= 2  σx 
(m) *10-4 

First floor 
Displacement 

Amplitude 
X1= 2  σx1 

(m) *10-4 

Second floor 
Displacement 

Amplitude 
X2= 2  σx2 

(m) *10-4 

Third floor 
Displacement 

Amplitude 
X3= 2  σx3 

(m) *10-4 
1       
2       
3       
4       
5       
6       
7       
8       
9       
10       
11       
12       
13       
14       
15       
16       
17       
18       
19       
20       
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Table 6.7 Base motion test data on four storey building frame without soft first storey 

Sl.no 
  
  
  
  

Frequency 
  

(Hz) 
  
  

Base motion 
Amplitude 
σx*10-4 
rms (V) 

First floor 
Amplitude  
σx1*10-4 
rms (V) 

Second floor 
Amplitude  
σx2*10-4 
rms (V) 

Third floor 
Amplitude 
σx3*10-4 
rms (V) 

Base motion 
Displacement 

Amplitude 
X= 2  σx 
(m) *10-4 

First floor 
Displacement 

Amplitude 
X1= 2  σx1 

(m) *10-4 

Second floor 
Displacement 

Amplitude 
X2= 2  σx2 

(m) *10-4 

Third floor 
Displacement 

Amplitude 
X3= 2  σx3 

(m) *10-4 
1       
2       
3       
4       
5       
6       
7       
8       
9       
10       
11       
12       
13       
14       
15       
16       
17       
18       
19       
20       
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Table 6.8 Estimate of the first natural frequency of the building frame with and without soft first story 

 
Frame with soft first story Frame without soft first story 

Analytical Experimental Analytical Experimental 
    

 
 

Table 6.9 Estimate of the fundamental mode shape of the building frame with and without soft first story 

 

Frame with soft first story Frame without soft first 
story 

Analytical Experimental Analytical Experimental 
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 Experiment 7 
 

Dynamics of one-span and two-span beams. 
 

7.0 Background 
 
The study of behavior of bridge structures subjected to dynamic effects of moving loads, 
wind and earthquake loads is of considerable interest in civil engineering. Similarly, 
vibration analysis of piping structures in industrial plants subjected to earthquake loads is 
also of significant interest. These structures can be idealized as simple beam structures 
for the purpose of preliminary studies. In the present experiment we study the responses 
of one span and two span simply supported beams to harmonic excitations. The treatment 
of dynamic behavior of such beams, as distributed parameter dynamical systems, is 
contained in many books: see, for instance, the book by Paz (1984), in which singe-span 
beams, modeled as Euler-Bernoulli beams, with different boundary conditions (free, 
simply supported or clamped), is discussed in detail. Figures 7.1 and 7.2 show the 
structure under study. For the purpose of this study, we model these two structures as 
systems with two-degrees of freedom. The degrees of freedom considered are the 
translations at quarter points of the single-span beam and mid-span points for the two-
span beam. The mass matrix is obtained by lumping the masses at the quarter points (for 
simple supported beam) and at mid-span points (for two-span beam). For the purpose of 
evaluating the stiffness matrix, you would need to employ one of the methods for 
computing deflections of beam structures under concentrated loads. 
 
7.1 Experimental set-up 

 
The beam structures shown in figures 7.1 and 7.2 are supported on special clamping 
devices that are designed to simulate simple support conditions. The intermediate support 
(figure 7.1b and 7.2b) is detachable so that, upon the removal of the support, the structure 
reduces to a one-span beam structure shown in figures 7.1a and 7.2a. In both these cases 
the beam is driven at a distance of 300 mm from the right hand support by an electric 
motor with eccentric mass and whose speed can be controlled. An auxiliary dummy mass 
equal to the mass of the motor is placed at 300 mm from the left end support so as to 
achieve a structure which is symmetric about x=600 mm. The setup used for conducting 
the experiment is depicted in figure 7.3. The force transmitted by the motor is deduced by 
measuring the motor RPM and knowing the eccentric mass and its eccentricity. 
 
7.2 Mathematical models 
 
As has been already noted, we propose to model the two beam structures using two-dof 
models. The governing equations in this case would be of the form 
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…(7.1) 
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The mass matrix coefficients for one span beam is given by, 
 
m11 = 0.5*MA +ME +MF         

 
m22 = 0.5*MA+MB+MC+2* MD1 +MF      
 
and for two span beam, 
 
m11 = 0.25*MA +ME +MF         

 
m22 = 0.25*MA+MB+MC+2* MD2 +MF      
 
Here MA = Mass of main beam, MB = Mass of motor, MC = mass of flywheel, MD1 and 
MD2 = eccentric mass on the flywheel, ME = mass of lumped mass and MF = base plate 
mass. 
It may be noted that, for one span beam, the contribution to mass due to distributed mass 

of the beam is evaluated by assuming )()/sin(),( tLxtxy φπ=  leading to 
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Similarly, for the two span beam, it is assumed that )()/2sin(),( tLxtxy φπ=  leading to 
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To construct the stiffness matrix for the case of single span beam, we consider the 
loading configurations as shown in figure 7.4a and 7.4b. With reference to the notations 
used in this figure, the flexibility and stiffness matrices for the system are given 
respectively by 
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…(7.2) 
The same expression would be valid for the two-span beam with the modifications that 
the deflections ,ijy i,j=1,2 are now interpreted with reference to figure 7.4c and 7.4d. The 
evaluation of the damping matrix would be based on experimental results and this would 
be elaborated later in this document. Once the structural matrices have been formulated 
the solution of equation 7.1 proceeds along the lines outlined in Appendix A. Thus, one 
can either use the normal mode expansion method or the dynamic stiffness matrix 
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approach to obtain the solutions. The latter solution would be valid only in the steady 
state and will be of the form  
 

{ }fKCiMX
tiXtx

12 ][)(
)exp()()(

−++−=

=

ωωω
ωω

 

…(7.3) 
Here M,C and K are, respectively, the mass, damping and stiffness matrices and f is the 
force vector. It is of interest to note that the mode shapes of the two-span beam has 
interesting resemblance to the mode shapes of simply supported beams and propped 
cantilever beams. This feature can be observed from figure 7.5, wherein, the first five 
mode shapes for a single-span simply supported beam, a single-span propped cantilever 
beam and a two span continuous beam with simple supports and equal spans, are shown. 
It may be noted that the span of the two single-span beams are equal and are two times 
the individual spans of the continuous beam. It can be seen that the first mode of the two-
span beam is identical to the second mode of the simply supported one-span beam. 
Similarly, in the second mode of the continuous beam, the deflected profile of the 
individual spans resembles the mode shape of the single span propped cantilever beam. 
Similar features associated with the higher modes of the beams could also be deduced. It 
may be noted that the mode shapes shown in figure 7.5 have been obtained using finite 
element method and these models take into account the presence of concentrated masses 
at the quarter points of the beams. 
 
7.3 Experimental Procedure 
 
7.3.1 Instruments and sensors 
 
Table 7.1 provides the details of the instruments and sensors used in this experiment. 
7.3.2 Initial measurements 
 

• Collect the data pertaining to geometric and material properties of the vibrating 
system (tables 7.2 and 7.3). Parts of data in table 7.2 have to be obtained from 
instructor/handbooks. 

• Study the charts/manuals that accompany the sensors and the charge amplifiers 
and note down the sensor sensitivities, sensor mass and factors to convert the 
measured electrical signal into mechanical units; this depends upon the amplifier 
settings used- see table 7.4. 

 
7.3.3 Studies on one-span beam  

 
• Arrange the experimental setup as shown in figure 7.3a.  
• Set the beam into free vibration by applying an initial displacement. This 

can be achieved by gently pulling down the beam at about the mid-span 
and releasing it. Observe the free vibration decay on the oscilloscope and 
record the results as per the format given in table 7.5. Evaluate the 
logarithmic decrement and hence the damping ratio. As a first 
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approximation this value of damping could be assumed to be valid for all 
the modes. 

• Run the forced vibration test on the beam at different values of motor 
RPM.  Vary the RPM so that you cross the first two resonances of the 
beam. Under the resonant conditions observe if the two masses are 
oscillating in phase or not. 

• For a given motor RPM, allow the beam to oscillate for a few cycles so 
that the beam reaches its steady state. At this stage, measure the amplitude 
of the beam responses by using time history of displacement response 
acquired on the oscilloscope and record the amplitude data as in table 7.6. 
Note that the frequency of driving and the frequency of structural response 
can be assumed to be equal and this can be measured from the trace of 
displacement response on the oscilloscope. 

• Using the modal damping ratios obtained in the above step determine the 
C matrix using the relation [ ] [ ] 11 ][ −−

ΦΞΦ= tC  where Ξ is a diagonal 
matrix with entry on the nth row being .2 nnωη  It can be shown that 

[ ] Φ=Φ
− Mt 1 and [ ] MtΦ=Φ −1 , and, therefore, one gets 

MMC tΦΞΦ= (see Appendix A). Using this C matrix, solve the 
mathematical model to determine analytically the amplitude of floor 
responses as a function of the driving frequency (see equations 7.1 and 
7.2). Compare these analytical predictions with the measured frequency 
response functions. 

• Plot the variations of X1/F and X2/F versus f and compare this plot with the 
results from mathematical model of the structure. 

 
7.3.4 Studies on two-span beam 
 

These steps are essentially similar to the steps adopted for studying the one-span 
beam (see section 7.3.3). Here the set-up needs to be according to figure 7.3b. The 
measurements on damping and forced response need to be recorded as per the formats 
given in Tables 7.5 and 7.7.  

7.4 Report preparation 
1. Evaluate the 22×  flexibility matrices for the one-span and two-span beams using 

any method of structural analysis that you are familiar with. Derive equation 7.1. 
2. Analyze the mathematical model and obtain predictions on variations of  X1/F and 

X2/F versus f for the two beams. 
3. Document the experimental observations as per format given in tables 7.2-7.7. 
4. Compare the experimentally observed plots of X1/F and X2/F versus f for the two 

beams with corresponding predictions from the mathematical model. Discuss the 
qualitative features of these plots and explain the mutual agreement/disagreement 
between theoretical and experimental results. 

5. Respond to the following questions: 
(a) Explain the mutual agreement/disagreement between the analytical 

predictions and experimental results on beam responses. 
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(b) Explain the relationship between the normal modes of the two-span beam 
with those of one span simple supported and propped cantilever beams. 
What would happen if the two-span beam had unequal spans? 

(c) What modifications would you make to the mathematical model for the 
beam structures if the beams were to be subjected to dynamic support 
motions, and moving loads? 

(d) List the features that you would expect in the earthquake response of 
bridges as their span becomes longer. 

(e) Piping structures in industrial plants are supported at different levels 
within a civil structure. Discuss how you would analyze the response of 
such piping structures to earthquake loads. 
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(a) 
 

 
 

(b) 
 

Figure 7.1 The test rig showing the beam structure under study; (a) one-span beam;  
(b) two-span beam. The intermediate support in figure (b) can be removed to obtain the 
one-span beam of figure (a). 
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(a) 

 
(b) 

Figure 7.2 Details of the beam structure under study; (a) one-span beam; (b) two-span 
beam. 
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(a) 

 
(b) 

Figure 7.3 Setup for measurement; the force transmitted by the motor is deduced by 
measuring the motor RPM and knowing the eccentric mass. 
 
 

 
(a) 

 
(c) 

 
(b)  

(d) 
Figure 7.4 Calculation of flexibility matrix for the beam structures; (a) and (b): single-
span beam; (c) and (d): two-span beam. 
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Figure 7.5 First five mode shapes of a single-span simply supported beam, a single-span 
propped cantilever beam and a two-span simply supported continuous beam. 
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Table 7.3 Equipment used in free vibration and forced vibration test of Simply supported 
beam & Continouos beam 

 
S.No. Equipments Quantity 

1 Oscilloscope 1 
2 Accelerometers 2 
3 Signal conditioning amplifier 1 
4 Regulated DC power supply 1 
5 D.C Motor 1 

 

Table 7.4 Physical properties of parts of the structure 

Material Properties 

Part Material Mass 
Kg 

Young’s 
Modulus (E) 

N/m2 

Mass density 
(ρ) kg/m3 

Main Beam Mild Steel MA =    
D.C. Motor - 
Fly wheel Aluminum MB+MC=    

Eccentric mass 
(Simply supported 
beam) 

Mild Steel MD1 =    

Eccentric mass 
(Continuous beam) 

Mild Steel MD2 =    

Lumped Mass Mild Steel ME =    
Base plate Mild Steel MF  =    

 

Table 7.3 Geometric data of the structure 

Dimensions in mm Part 
Depth 
(DA) 

Width 
(BA) 

Length 
(LA) 

Effective Length (Le)

Main beam     
Eccentricity of eccentric mass on the flywheel, e= 
Formula for calculating, MA = DA* BA* Le*ρ 

 

 

Table 7.4 Details of the sensors used 

Sensitivity, S Sl. 
No. Sensor mV/ms-2 mV/g 

Mass 
Gm 

1     
2     
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Table 7.5 Free vibration test data on simply supported beam (observations I) and continuous beam (observations II) 

S.No. Quantity Notation Observations I Observations II 
1 Amplitude of 0th peak A0   
2 Amplitude of nth peak An   
3 Number of cycles n   
4 Logarithmic decrement δ   
5 Damping ratio ζ   

 

Table 7.6 Forced vibration test data on simply supported beam 

Sl. 
No. 

Frequency, 
f 

(Hz) 

Frequency 
ω=2πf 
(rad/s) 

Amplitude 
σx1 

rms (mV) 

Amplitude 
σx2 

rms (mV)  

Conversion 
Factor 

CF 
(V/m) 

Displacement 
Amplitude 

X1 = 
2  (CF) σx1 

(m) 

Displacement 
Amplitude 

X2 = 
2  (CF) σx2 

(m) 

Force, 
F = 

2MD 2  eω2 

(N) 

Receptance 
X1/F 

(m/N) 

Receptance 
X2/F 

(m/N) 

1           
2           
3           
4           
5           
6           
7           
8           
9           

10           
11           
12           
13           
14           
15           
16           
17           
18           
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19           
20           

 
 

Table 7.7 Forced vibration test data on Continuous beam 

 
Sl. 
No. 

Frequency, 
f 

(Hz) 

Frequency 
ω=2πf 
(rad/s) 

Amplitude 
σx1 

rms (mV) 

Amplitude 
σx2 

rms (mV)  

Conversion 
Factor 

CF 
(V/m) 

Displacement 
Amplitude 

X1 = 
2  (CF) σx1 

(m) 

Displacement 
Amplitude 

X2 = 
2  (CF) σx2 

(m) 

Force, 
F = 

2MD 2  eω2 

(N) 

Receptance 
X1/F 

(m/N) 

Receptance 
X2/F 

(m/N) 

1           
2           
3           
4           
5           
6           
7           
8           
9           

10           
11           
12           
13           
14           
15           
16           
17           
18           
19           
20           
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Experiment 8 
 

Earthquake induced waves in rectangular water tanks  
 
8.0 Background 
 
The study of behavior of liquid storage tanks during an earthquake is one of the important 
problems in earthquake engineering. In the event of an earthquake there would be 
additional fluid pressures that would be created in the body of the liquid and an 
understanding of the nature of these pressure fields is vital for safe design of these tanks. 
It is of interest to note that water tanks need to be functional following a major 
earthquake since they would serve to control fires that often get triggered during a major 
earthquake. There have been several instances of failure of water tanks during the 1993 
Latur earthquake and the 2001 Bhuj earthquake in India; see figure 8.1. The study of 
liquid storage tanks under earthquakes needs the application of principles of fluid and 
solid mechanics. The term sloshing is used to describe any motion of a free liquid surface 
inside its container. The liquid motion interacts with the motion of elastic containers 
thereby producing a rich variety of fluid-structure interactions. 
 
In this experiment we study the phenomena of formation of standing waves on free 
surface of liquid inside a rectangular container. The setup used for this purpose is shown 
in figure 8.2. This consists of a rectangular tank whose walls are made up of perspex 
plates housed inside a steel cage. The wall thickness and the walls and the stiffness of the 
steel frame are so designed that the tank walls can be treated as being rigid at frequencies 
at which we expect to have standing waves formed on the liquid surface. The tank is 
mounted on an electro-mechanical shake table that supplies harmonic base motions to the 
tank base. This motion can be viewed, to a first approximation, as the earthquake induced 
motions on a rectangular tank mounted directly on the ground. The objective of the 
experiment is to excite the liquid volume inside the tank at different frequencies and 
detect the frequencies at which standing waves are formed on the liquid surface. A 
mathematical model based on fluid mechanics background is used to theoretically predict 
these frequencies and the wave patterns. 
 
8.1 Mathematical model 
 
Figure 8.3 shows a two-dimensional water tank of length 2l containing water up to a 
height h. We assume that the liquid flow is inviscid, irrorational, and incompressible. We 
now consider the question as to what type of steady state waves may exist on the liquid 
surface. We use the notation ),,(&),,,(),,,( tyxvtyxutyxφ to represent, respectively, the 
velocity potential, velocity components in x and y directions. The following equation is 
known to govern the velocity potential (see, for example, L G Currie, 1974, 
Fundamentals of mechanics of fluids, McGraw-Hill, NY, pp. 201-205) 
 

02

2

2

2

=
∂
∂

+
∂
∂

yx
φφ                 …(8.1) 
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with the boundary conditions given by 
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…(8.2) 
The first of the above boundary conditions is obtained by applying the Bernoulli’s 
equation on the free surface and the remaining set of boundary conditions reflects the fact 
that the normal fluid velocity components at the wall boundaries are zero. The symbol g 
in the above equation represents the acceleration due to gravity and the other notations 
are explained in figure 8.3. We seek a steady state wave solution of the form 
 

tyxtyx ωψφ cos),(),,( =            
…(8.3) 

This leads to the field equation 
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with the boundary conditions 
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…(8.5) 
We seek the solution of equation 8.4 in the variable separable form )()(),( yYxXyx =ψ . 
This leads to the equation 
 

02

2

2

2

=+
dy

YdXY
dx

Xd          …(8.6) 

 
Dividing both sides by XY one gets 
 

2

2

2

2 11
dy

Yd
Ydx

Xd
X

−=                     …(8.7) 
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Since the left hand side is a function of x alone and right hand side is a function of y alone 
it turns out that each of the two terms appearing in the above equation needs to be equal 
to the same constant. That is,  
 

2
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2
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2 11 λ−=−=
dy

Yd
Ydx

Xd
X

                   …(8.8) 

This leads to  
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                    …(8.9) 

with boundary conditions 
 

0)()(;0)0(;0)( 2 =−==± hyh
dy
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dX ω               …(8.10) 

From the first equation 8.9 one gets 
 

xbxaxX λλ sincos)( +=                                  …(8.11) 

Imposing the boundary conditions 0)( =±l
dx
dX  one gets 
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For nontrivial solution one gets the condition 0cossin =ll λλλ . This leads to two 
families of solutions, namely, 
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The corresponding solutions for X(x) are obtained as 
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where a and b are arbitrary constants.  
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Considering now the second of the equation in (8.9) we get 
 

ydycyY λλ sinhcosh)( +=                  …(8.14) 
Imposing the boundary conditions on Y listed in (9) we get 
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with the parameter c remaining arbitrary. Combining equations 8.13 and 8.15 one gets 
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This leads to two families of standing wave patterns given by 
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The velocity components can subsequently obtained by using  
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In particular one gets 
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It may be noted that the natural frequencies given by equation 8.16 and the velocity 
profiles at y=h given by equation (8.19) can be observed and measured during 
experiments. Figure 4 shows plots of first few modes of surface oscillations as per 
equation 8.19 (with l=0.12 m and h=0.20 m). The variation of natural frequencies 
(equation 8.16) for l=0.12 m and for different values of h are shown in figure 8.5. 
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8.2 Experimental procedure  
 

1. Mount the water tank on the shake table as shown in figure 8.2. See Table 8.1 for 
list of equipment and sensors needed to perform this experiment. 

2. Measure the dimensions of the tank and the water level inside the tank. Add a 
color dye to the water so as to facilitate visual observations of the water surface 
oscillations. 

3. Excite the tank harmonically starting with low values of frequency. At each 
frequency visually observe the behavior of the water surface. 

4. At every value of the frequency allow sufficient time to pass so that oscillations of 
water reach steady state. 

5. As the frequency of driving approaches one of the natural frequencies, the water 
surface begin to oscillate with perceptible amplitudes (see figure 8.6). Note down 
the frequency at which such oscillations occur. Record observations as in Tables 
8.2 and 8.3. 

6. The profile of the standing waves at resonance can be measured by a simple 
device as shown in figure 8.7. This consists of inserting a white sheet at the inner 
wall of the tank and allow the oscillating liquid surface to leave behind a tinted 
trace on the sheet. The shape of the standing waves could be inferred by 
measuring the heights from mean level of the tinted trace left on the paper by the 
oscillating liquid surface. Following this procedure, obtain the shape of the 
standing waves at the liquid surface for first few modes. 

7. Predict the frequencies and shapes of the standing waves using the theoretical 
formulation provided in section 8.1. 

8. Compare the theoretical and experimental results and draw conclusions on their 
mutual agreement/disagreement. 

9. Repeat the experiment for different values of heights of water level inside the 
tank.  

10. Remount the tank by swiveling it through 90 degrees about the vertical axis. 
Repeat the experiment as described above for this configuration. 

 
8.3 Report submission 
 

1. Tabulate the observed natural frequencies for different heights of water level and 
for the two alternative ways of mounting the tank. Include the results from 
theoretical analysis in this table.  

2. Measure the water heights above the still surface level from the tinted trace 
obtained on the white sheet (see step 6 in section 8.2). Plot these observed surface 
profiles and super pose on it the theoretical predictions (equation 8.19). 

3. Answer the following questions: 
 

(a) What modifications are needed to the governing equations derived in section 
3.0 if the applied support motion also is to be included in the boundary 
conditions? What would be this modification if the tank is subjected to three-
component support motion? 
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(b) What would happen if the tank had a square or cylindrical cross section 
instead of rectangular cross section? 

(c) The tank walls have been assumed to be rigid in this study. Is this a realistic 
assumption? How can this assumption be relaxed in the analysis? 

(d) Attention in this experiment has been limited to the study of formation of 
standing waves. How the study can be extended, analytically and 
experimentally, to obtain the fluid pressure distribution on the tank walls? 

 
 
 

 
 

Figure 8.1 Failure of water tank in Manfera during the 2001 Bhuj earthquake 
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Figure 8.2 Experimental setup. 
 
 
 

 
Figure 8.3 Geometry of water stored in a rectangular container.
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(a) 
 

 
(b) 

 
Figure 8.4 The first few modes of oscillations of the liquid surface estimated using theory. 
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(a) 

 

 
 

(b) 
Figure 8.5 Estimates of natural frequencies with l=0.12 m and for different values of 

liquid column height. 
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(a) (b) 
 

(c) 
 

(d) 

 
Figure 8.6 Liquid surface oscillations at resonance (a) l=0.12 m; mode 1 (b) l=0.12 m; 2 
mode 2 (c) l=0.15 m mode 1 (d) l=0.15 m mode 2 
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Figure 8.7 Method for measuring the water surface profile at resonance; notice the blue 
trace left on the white paper by the oscillating liquid surface. 
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Table 1 Equipments used in conducting experiment on water tank 

No. Equipments Quantity 
1 Oscilloscope 1 
2 Accelerometers 1 
3 Signal conditioning amplifier 1 
4 Shake table 1 

 
Table 2 Natural frequencies of liquid column; l=0.12 m; h=0.20 m. 

 
Mode Number Analysis (Hz) Experiment (Hz) 

1   
2   
3   

 
Table 3 Natural frequencies of liquid column; l=0.15 m; h=0.20 m. 

 
Mode Number Analysis (Hz) Experiment (Hz) 

1   
3   
5   
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Experiment 9 
 

Dynamics of free-standing rigid bodies under base motions 
 

9.0 Background 
 
Studies of free-standing rigid blocks under dynamic base motion is of considerable 
interest in earthquake engineering, not only because of their relevance to the 
understanding of toppling of unrestrained systems, such as, battery racks, transformers, 
computer CPUs, refrigerators, cup boards, book cases, etc., but also, from the point of 
view of inferring the possible amplitude of ground accelerations based on observations on 
toppled objects in an earthquake hit area (see figure 9.1). Even for objects that are fixed 
to the supports, such as equipment bolted to the ground, in case the bolts yield during 
strong motion, the system would subsequently behave like a free standing object. It is 
evident that toppling of equipment would often result in loss of functionality and hence 
contribute to economic losses due to an earthquake. The free standing objects could have 
a variety of geometries (for example, rectangular, cylindrical, stacked objects) and under 
the action of multi-component dynamic base motions, these objects could display a rich 
variety of dynamic behavior. These motions are characterized by large displacements and 
energy dissipation mechanisms involving impacting and sliding. Consequently, 
mathematical models for such systems are nonlinear in nature and require numerical 
solution procedures. 
 
In the present experiment we study the dynamics of a rectangular rigid block under one 
dimensional harmonic base motion. The setup for studying the initiation of rocking, 
rocking oscillations and possible toppling of rigid rectangular blocks is shown in figure 
9.2. Here the energy dissipation takes place by impacts with the velocity after impact 
being a fraction less than the velocity before impact. In making a mathematical modeling, 
the block is assumed to be long in one direction so that attention could be focused on the 
study of planar rocking behavior. Furthermore, we neglect the possibility of sliding of the 
block in the direction of applied base motion. To capture the energy dissipation due to 
impacting in a numerical model, one needs to determine the time of impacts while 
integrating the governing equation of motion.   This can be achieved by dividing the time 
interval into a sequence of subintervals with each of the subintervals representing 
episodes of rocking between two successive impacts. The lengths of these subintervals 
are not know a prioi and a termination criteria based on the zeros of the rotation response 
of the block needs to be built into the integration scheme. This exercise, in itself, would 
provide a good opportunity to appreciate the nuances of integrating nonlinear equations 
of motion.  
 
9.1 Mathematical model and program for numerical simulations 
 
A rigid rectangular block resting on a rigid base is shown in figure 9.3. We denote by W 
the weight of the block and by g the acceleration due to gravity; H and B are the block 
dimensions as shown in figure 9.3. The block is taken to be long in the direction normal 
to the plane of the paper. It is assumed that the block does not slide and when set into 
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rocking motions it rotates about axes passing through the points O  and 'O . The base 
acceleration h(t) is taken consist of a single horizontal component of harmonic signal. 

From figure 9.3 it can be deduced that the force 
g

Wh  tends to lift the block around the 

corner 'O  while the force 0.5WB resists this action. Thus, whenever the condition 
 

g
HtWhWB

2
)(

2
>          …(9.1) 

 
is satisfied, there would be no uplift. Consequently it can be concluded that the minimum 
acceleration h* needed to lift the block about the corner 'O  is given by 
 

H
B

g
h

=
*           …(9.2) 

Thus, if in an earthquake hit area we observe that a rectangular object of dimensions B 
and H has actually toppled or we find evidence that an object had lifted up during the 
earthquake, it is likely that the ground acceleration would have been at least B/H during 
the earthquake. Once the object lifts up about a corner, the equation of equilibrium can be 
deduced by considering the free body diagram of the object as shown in figure 4a and b. 
Thus when the body is rocking about O one gets 
 

0)cos()()sin( =−+−+ θαθαθ R
g

tWhWRI &&       …(9.3) 

Similarly, for rocking about 'O  one has 
 

0)cos()()sin( =−+−+ ψαψαψ R
g

tWhWRI &&      …(9.4) 

Noting that ψθ −= , the above two equations can be combined into a single equation as  

( ) ( ) 0)(sgncossgnsin =−+−+
g
thWRWRI θθαθθαθ&&          …(9.5) 

with specified initial conditions )0(θ  and ).0(θ&  Here sgn(.) denotes the signum function 
defined as 1)sgn( =θ  for 1>θ  and 1)sgn( −=θ for .1<θ  Let us define t*>0 such that 

0*)( =tθ , that is, t* denotes the time at which the block impacts the base. The velocity 
after impact is taken to be related to the velocity before impact through the 
relation −+ = *()*( tt ηθθ ); here η is the coefficient of restitution between the block and 
the supporting base. The above equation is highly nonlinear both in terms of large 
rotations and also in terms of dissipation of energy through impacting. Furthermore, the 
excitation term h(t) appears as a parametric excitation term. This type of equations can 
only be solved numerically. To capture the energy dissipation due to impacting in a 
numerical model, one needs to determine the time t* of impacts while integrating the 
governing equation of motion.   This can be achieved by dividing the time interval into a 
sequence of subintervals with each of the subintervals representing episodes of rocking 
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between two successive impacts. The lengths of these subintervals are not know a prioi 
and a termination criteria based on the zeros of the rotation response of the block needs to 
be built into the integration scheme. To develop a numerical simulation scheme we re-
write equation 9.5 in the form 
 

0)()sgncos()sgnsin( 22 =−+−+
g
thθθαωθθαωθ&&                     …(9.6) 

Here IWR /2 =ω . Furthermore, using the notation ( ) ( )21 ,, θθθθ =&  the above equation 
can be written in terms of two first order differential equations as  
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The equation is now in a form suitable for numerical integration using procedures such as 
Runge-Kutta method. The following is a code that uses Matlab ODE45 routine along 
with provision for detecting the event of impacting. 
 
 
clear all 
close all 
 
global g B H alpha w R eta amp alm 
B=75e-03; 
H=115e-03; 
R=sqrt(B^2+H^2)/2; 
g=9.81; 
w=sqrt(0.75*g/R); 
alm=63.14; 
amp=0.00287; 
eta=.43; 
alpha=atan(B/H); 
period=2*pi/alm; 
npts=10000; 
ncyc=10; 
nimpacts=100; 
 
 
dt=period/npts; 
%theta0=alpha/100; 
theta0=0.03; 
thetadot0=0; 
t0=0; 
icount=1; 
for j=1:nimpacts; 
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tspan=t0:dt:t0+ncyc*period; 
 
z0=[theta0;thetadot0]; 
options=odeset('events','on'); 
[t,z,te,ze,ie]=ode45('eom',tspan,z0,options); 
 
nlast=size(z,1) 
time(icount:icount+nlast-1)=t; 
th(icount:icount+nlast-1)=z(:,1); 
thdot(icount:icount+nlast-1)=z(:,2); 
icount=icount+nlast; 
 
t0=t(nlast); 
theta0=0; 
thetadot0=z(nlast,2)*eta; 
end; 
figure(1) 
plot(time,th); 
xlabel('time s') 
ylabel('rotation rad') 
title('Rotation as predicted by numerical integration') 
axis([0 6 -0.12 0.12]) 
figure(2) 
plot(time,thdot); 
xlabel('time s') 
ylabel('rotation velcoity rad/s/s') 
title('Rotation velocity as predicted by numerical integration') 
axis([0 6 -4 4]) 
figure(3) 
% comet(th,thdot) 
plot(th,thdot) 
xlabel('rotation rad') 
ylabel('rotation velocity rad/s/s') 
title('Phase plane plot') 
axis([-.12 .12 -4 4]) 
function [value,isterminal,dircn]=eom(t,z,flag); 
global g B H alpha w R eta amp alm 
if nargin<3|isempty(flag) 
    value=[z(2); -w*w*sin(alpha*sign(z(1))-z(1))+w*w*cos(alpha*sign(z(1))-
z(1))*amp*alm*alm*sin(alm*t)/g]; 
else 
    switch flag; 
    case 'events' 
        value=z(1); 
        isterminal=1; 
        dircn=0; 
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    otherwise 
        error('function not programmed for this event') 
    end; 
end; 
 
 
 
9.2 Experimental procedure  
 
At the outset we need to note that in this experiment it is required to measure the angle of 
rotation and rotational velocity of the rocking block. Table 9.1 lists the sensors and data 
acquisition system needed to conduct this experiment. The measurements on rotation and 
rotational velocity can be accomplished by using displacement and velocity sensors 
meant for measuring translational displacements and velocities. Thus, in figure 9.5 we 
show the path traced by a displacement/velocity sensor mounted on the lateral face of the 
block as the block rocks. Clearly, in order to obtain the rotational displacement/velocity 
the sensor measurement needs to be divided by the radius of the arc of circle that the 
senor traces as the block rocks. 
 

1. Measure B and H for the block and deduce R andα . 
2. Place the block on the table as shown in figure 9.2 and fix the sensors as shown. 
3. Calculate the minimum acceleration needed for the block to lift up using equation 

9.2. Run the shake table by varying the driving frequency in small steps. In doing 
so, for a fixed value of table displacement, we would be increasing the base 
acceleration in small increments. Make sure that the block starts from rest at every 
increment of the driving frequency. Verify if the criterion given by equation 9.3 
for lift up is satisfied or not. 

4. Select a driving frequency above the critical frequency and run the shake table. 
Record the displacement and velocity time histories and subsequently deduce the 
rotational displacement and velocity. 

5. The coefficient of restitution η can be estimated by zooming the velocity plot and 
measuring the reduction in velocity before and after impacts (see figure 9.6). The 
coefficient can be estimated a t a set of about 10 points and an average value over 
these impacts could be used as the estimate. 

6. For the block configuration under study run the Matlab code (listed in section 9.1) 
to numerically simulate the block rocking. The input to this program consists of 

η,, HB and details of h(t). 
7. Compare the measured time histories of rotational displacement and velocity with 

the corresponding numerical predictions. Also plot the phase plane plot, that is, 
plot of )(tθ versus ).(tθ&  Comment on the mutual agreement/disagreement 
between experimental observations and numerical predictions..  

8. By varying the frequency/amplitude of the base motion, thereby varying the peak 
base acceleration, observe when the block would topple. (Caution: do not mount 
sensors on the block when you are trying to simulate toppling of the block if not 
sensors could get damaged when the block topples). 
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9.3 Report submission 
 

1. Document the observations on steps 1-8 as in section 9.2. 
2. Include the print outs of the Matlab plots and the Matlab m-file. 
3. Respond to the following questions 

(a) Construct the moment-rotation diagram for the rectangular block under study. 
(b) What are the limitations of the mathematical model developed in section 9.2? 
(c) Do you think study of toppled/lifted objects indeed provide a reliable means to 

estimate the peak ground acceleration in an earthquake hit area?  
(d) Re-derive the governing equation of motion for the block by including 

simultaneous action of horizontal and vertical components of the ground 
motion and also by including the possibility of sliding in addition to rocking. 

 
 
 

 
Figure 9.1 Overturned and tilted rigid objects observed at Bhuj subsequent to the 2001 
Gujarath earthquake. Based on such observations one could estimate a lower bound on 
peak ground acceleration that might have occurred during the earthquake. 
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(a) 

 

 
(b) 

 
 
Figure 9.2 Rectangular rigid block placed freely on a shake table and subject to harmonic 
base motion; (a) view of block placed on the table; (b) Measurement setup. 
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Figure 9.3 Rectangular rigid block under harmonic base acceleration 
 

 

 
(a) (b) 

 
 

Figure 9.4 Free body diagram of the block under base acceleration. 
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Figure 9.5 Paths traced by sensors in a rocking block. 
 

 
 

Figure 9.6 Zoomed trace of rotational velocity time histories showing the loss of velocity 
upon impacts.  
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Table 9.1 Equipments used in conducting the experiment  

No. Equipments Quantity 
1 PC Based Data Acquisition system (2 Channels) 1 
2 Accelerometers 2 
3 Signal conditioning amplifier 

(two channels) 
1 

4 Shake table 1 
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EXPERIMENT 10 
 

Seismic wave amplification, liquefaction and soil-structure interactions  
 

10.0 Background 
 
Most often civil engineering structures are founded on soil layers.  Exception to this 
occurs when rock outcrops are available on which the structures could be directly 
supported. Consequently, the ground motions that act on the structure supports are often 
filtered through the soil layers on which they are founded. This leads to several questions 
pertaining to modifications caused by the soil layers to the seismic waves, the response of 
soil itself to such wave passages and the possible interaction between soil layer and the 
structure in which case the soil and structural systems need to be analyzed together as 
mutually interacting systems.  Figure 10.1 show the schematic of the problem of seismic 
wave amplification. Here the amplitude and frequency content of the motion at the 
ground surface level get modified due to the passage of the motions at the bedrock level 
through the soil-layer. The response of structures founded on soft soil deposits is also 
characterized by the following features (S L Kramer, 2004, Geotechnical earthquake 
engineering, Pearson Education, Singapore): 
 

(a) The inability of the foundation to conform to the deformations of the free-field 
motion would cause the motion of the base of structure to deviate from the free-
field motion. 

(b) The dynamic response of the structure itself would induce deformation of the 
supporting soil. 

 
This process, in which the response of the soil influences the motion of the structure and 
response of the structure influences the motion of the soil, is referred to as soil-structure 
interaction. The error due to the neglect of these effects could be unconservative and this 
could be established only after analyzing problems on case-by-case basis. The term 
liquefaction refers to drastic reduction in strength of saturated cohesionless soil deposits 
to the point where the deposits flow as fluids. Consequently, the soil would no longer be 
able to support engineering structures, thereby, leading to dramatic structural failures. 
Such damages have been observed to occur during several major earthquakes in the past. 
Such failures are most commonly observed near rivers, bays and other bodies of water 
(Kramer 2004). 
 
In the present experiment we study the problem of seismic wave amplification through a 
shear layer and also the problem of soil-structure interactions. We also demonstrate the 
phenomenon of liquefaction. The setup shown in figure 10.2 is used to mimic the 
behavior of a soil layer. This consists of a thick layer of foam (commonly used for 
upholstery) enclosed inside a set of four Perspex plates that are connected to each other 
via a set of hinges. When subject to horizontal base motion (figure 10.2a), the system 
behavior closely resembles that of a soil layer. For the purpose of studying soil structure 
interactions, the setup shown in figures 10.3 and 10.5 is used. This consists of a one 
storied building frame that can be mounted on the soil layer (figure 10.3a, 10.5c) or 
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directly on to the shake table (figure 10.3b, 10.5b). Two frames have been designed to 
demonstrate the phenomenon of soil structure interactions. When mounted on the soil 
layer shown in figure 10.2, for one of these frames, the effect of soil structure interactions 
would be important than for the other frame. The setup shown in figure 10.4 is used to 
demonstrate the occurrence of liquefaction in dynamically loaded soil layers. These 
setups fashioned after the models proposed by Berton et al, 2004 (S Berton, T C 
Hutchinson, and J E Bolander, 2004, Dynamic behavior of simple soil-structure systems, 
University of California at Davis, http://ucist.cive.wustl.edu/ ). 
 
10.1 Mathematical model 
 
10.1.1 Seismic wave amplification 
 
We adopt a one dimensional shear beam analysis to study the system shown in figure 
10.1. It is assumed that  

(a) the boundaries at x=0 and x=l are horizontal , 
(b) the boundary at x=0 represents the rigid rock level and the boundary at x=l 

represent the free-ground surface, 
(c) the soil layer is modeled as a shear beam, 
(d) the applied motion at the base is horizontal and the response of the shear layer is 

predominantly caused by waves propagating vertically upwards from the base, 
and 

(e) the soil and the bedrock level extend to infinity in the horizontal direction. 
Denoting by G the shear modulus of the soil layer and by ρ  the mass density, the 
governing equation of motion can be shown to be given by (see the book by Kramer cited 
above) 
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with boundary conditions 
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The second term on the left hand side in equation 10.1 represents the strain rate 
dependent viscous damping. It is assumed that the base motion is harmonic in nature 
given by ).exp()( 0 tihth ω=  Since the system is linear, the solution in the steady state can 
be taken to be of the form )exp()(),( tixtxu ωφ= . It follows that the unknown function 

)(xφ is governed by the equation 
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with 0)0( h=φ and .0)( =′ lφ  Here a prime denotes differentiation with respect to x and  
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The solution of equation 10.3 is of the form 
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xBxAx λλφ sincos)( +=                  …(10.5) 

After imposing the boundary conditions 0)0( h=φ and 0)( =′ lφ one gets 
 

xlhxhx λλλϕ sintancos)( 00 +=                 …(10.6) 
Thus the motion at the top of the soil layer is given by 
 

)exp(sec),( 0 tilhtlu ωλ=                  …(10.7) 
The ratio )(/),( thtlu can be interpreted as the dynamic magnification ratio and this given 
by 
 

lλω sec)( =Ξ                    …(10.8) 
Figure 10.6 shows the typical variation of the amplitude and phase of the amplification 
factor. It can be observed that the amplification factor depends upon the frequency and 
the damping and it reaches its maximum values at the soil layer natural frequencies.  
 
An alternative way to derive the above result is to employ method of normal mode 
expansion.  This method cannot be applied directly to equation 10.1 since it is associated 
with time varying boundary conditions. To proceed further we introduce the 
transformation 
 

)(),(),( thtxvtxu +=                   …(10.9) 
and the equation for the new dependent variable v(x,t) is given by 
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with boundary conditions given by  
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To analyze equations 10.10 and 10.11 we begin by considering the undamped free 
vibration problem given by 
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and seek the solution in the form )exp()(),( tixtxv Ω= φ . This leads to the eigenvalue 
problem 
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                …(10.13) 

Here a prime denotes differentiation with respect to x. This leads to the definition of the 
eigenvalues and eigenfunctions given by 
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The mode shapes satisfy the orthogonality conditions 
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Here nkδ  is the Kronecker delta function such that 1=nkδ  for n=k and 0=nkδ for 
.kn ≠ We now assume the solution of equation 10.10 in the form 
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where { }∞=0)( kk ta are the generalized coordinates. By substituting equation 10.16 in 10.10 
and using the orthogonality relations, the equations governing the generalized coordinates 
can be shown to be given by 
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For )exp()( 0 tihth ω= the steady state solution of equation 10.17 is given by 
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If one uses a one mode approximation, the displacement at the top of the soil layer is 
obtained as 
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This leads to the approximation to the amplification factor given by 
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Figure 10.7 shows the comparison of magnification factor obtained using equation10.8 
and the above equation over the frequency range that encompasses the first mode 
frequency. Clearly, for this frequency range, a one mode approximation would suffice 
and this assumption is made in the subsequent part of the study.  
 
10.1.2 Soil-structure interaction 
 
In analyzing the soil-structure system shown in figures 10.3a and 10.5c two approaches 
are possible. In the first, we model the soil layer as a sdof system that is uncoupled from 
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the building model. The response of this soil layer is first analyzed by treating the system 
as a sdof system under support motion h(t); the response of the soil layer is then fed as 
the input to the model for building frame which, again, is modeled as another single 
degree of freedom system; see figure 10.8a. In the second model, the soil layer and the 
building frame model are considered to be a two dof coupled system; see figure 10.8b. 
Let us compute the ratio of amplitude of response of the building floor and the amplitude 
of base motion at the bed rock level using the two models. 
 
According to the model shown in figure 10.8a, the equations governing the soil and 
structure system are given by 
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Similarly, for the coupled system shown in figure 10.8b, the governing equations are 
given by 
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where m*
s = 0.5*(ms+mb) 

 
By using the notation hyyhuu TT −=−= & , the above equation can be recast in the 
form 
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Since the excitation is harmonic in nature, the steady state solution of the above equation 
can be derived as  
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The amplification factors at the soil surface level and the building slab level can be 
deduced to be respectively given by 0/ hU and 0/ hY . Figure 10.9a shows the results of 
coupled and uncoupled analysis of soil-structure system for a typical case in which the 



 134

interactions are important and figure 10.9b shows the results for the case in which the 
interactions are relatively less important.  
 
To obtain parameters of the equivalent sdof model for the soil layer one can compare the 
first of equation 10.22 with one term approximation in equation 10.16 and 10.17. The 
equivalent model for the frame models could be established by assuming that the frame 
behaves as a shear beam with the slab deforming parallely to the direction of base motion 
with no joint rotations. 
 
10.1.3 Phenomenon of soil liquefaction 
 
We limit of our objective here to demonstrate the occurrence of liquefaction. The setup 
shown in figure 10.4 consists of a rigid rectangular box filled with saturated sand. The 
soil here is taken to support a rectangular object (a brick in this case). The box is mounted 
on the shake table that provides harmonic base motion. The test consists of driving the 
box by varying the driving frequency in small steps. At each frequency value the system 
is oscillate for about 25-30 cycles. At a certain value of the driving frequency (about 5 Hz 
in the present instance), the soil deposits liquefies and the block topples as shown in 
figure 10.10. Notice the ponding of the water at the surface consequent to the occurrence 
of liquefaction.  
 
10.2 Experimental procedure 
 
10.2.1 Instruments and sensors 
             
 Table 10.1 provides the details of instruments to be used in the experimental study. 
 
10.2.1 Studies on seismic wave amplification 
 

1. Weigh the system consisting of Perspex enclosure and the sponge block. 
Record the geometric details of the model as per the format in Table 10.1. 
Estimate the volume of the sponge and Perspex material. Determine an 
equivalent density. 

2. Mount the soil layer block on the shake table as shown in figure 10.2a. 
Perform the logarithmic decrement test and estimate the damping in the 
system shown in figure 10.2a. Record the results as in Table 10.5a. 

3. Vibrate the soil layer system by applying harmonic base motion at different 
frequencies. Record the steady state amplitude of response and the amplitude 
and frequency of the base motion in the format given in Table 10.7. Deduce 
the seismic amplification factor. 

4. Determine the first natural frequency based on the data obtained in the 
previous step. Use this information and estimate the value of the shear 
modulus of the soil layer by using equation 10.14 with n=0. 

5. Obtain the parameters of the sdof model shown in figure 10.8a; see the first of 
the equation 10.22 with one term approximation in equation 10.16 and 10.17.  



 135

6. Predict the seismic wave amplification factor analytically using the sdof 
approximation. Compare this theoretical prediction with the experimentally 
measured amplification factor.  

 
10.2.2 Studies on soil structure interactions 
 

1. Record the geometric details of the two frames (figures 10.3c and 10.3d) in 
the format given in Table 10.2. Some of the details (on elastic constants) may 
have to be obtained from the instructor/handbooks. 

2. First mount the frames on the shake table as shown in figure 10.3b. Measure 
the damping in the system by using logarithmic decrement test. Record the 
results as in Table 10.5a. 

3. Excite the structure by harmonic base motions of varying frequencies and, for 
each value of the driving frequency, record the steady amplitude of the slab 
motion and the frequency and amplitude of the applied base motion. Ensure 
that the system starts from rest at every change in the driving frequency and 
also that the system reaches steady state before recording the response 
amplitude. Tabulate the results as shown in tables 10.6a and 10.6b. 

4. Now mount the frames on the soil layer as shown in figure 10.3a (10.5c).  
Measure the damping in the system by using logarithmic decrement test. 
Record the results as in Table 10.5a. 

5. Repeat step 3 above on the frame-soil layer structure and record the results as 
in table 10.8a and 10.8b. Notice that measurements on the response at the base 
of the frame (that is, at the top of the soil layer) and at the slab level need to be 
made. 

6. Based on the observations made in tables 10.6 and 10.8 deduce the 
amplification factors for the soil-structure system. 

7. Evaluate the model parameters for the configurations shown in figure 10.8. A 
sdof model for the building frame could be made by using the shear beam 
approximation. This model for the frame can be combined with the sdof 
model for the soil layer obtained in step 10.2.1.5 above. This leads to the 
combined soil-structure model shown in figure 10.8b. 

8. Predict analytically the response of the frame slab by using coupled and 
uncoupled analyses as described in section 10.1.2. Compare the analytical 
predictions with the corresponding experimental observations. 

 
10.2.3 Studies on liquefaction of soil 

 
1. Mount the plywood box containing saturated sand on the shake table as shown 

in figure 10.4a. Place a brick on the sand surface as shown. 
2. Apply harmonic base motion with varying frequencies. At every value of the 

driving frequency allow the system to vibrate for about 25-30 cycles.  
3. When the system is driven at a frequency of about 5 Hz, you would notice that 

the sand would begin to liquefy and water would start ponding at the surface. 
This would be accompanied by sinking and toppling of the brick block. 
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10.3 Report submission 
 

1. Document the experimental observations and the deductions as per the format 
given in tables10.1-10.9. 

2. Develop the mathematical models for the soil layer, building frame and soil-
structure system as per simplifications suggested in figure 10.8 

3. For the soil layer system, compare the theoretical predictions on the wave 
amplification with corresponding observations from experiments and comment. 

4. For the combined soil-structure system, compare the theoretical predictions using 
coupled and uncoupled analyses for the two frames with corresponding 
observations from experiments and comment on 

(e) need for performing coupled analysis, and 
(f) mutual agreement/disagreement between theoretical and experimental 

results especially in the frequencies around the second mode of the 
combined system. 

5. Respond to the following questions. 
• What are the limitations of the setup shown in figure 10.2a vis-à-vis its ability 

to mimic the soil layer behavior? 
• In the present study we have replaced the soil layer by an equivalent sdof 

system. Suppose we wish to replace by a 2-dof system. How this can be 
accomplished? 

• How could the questions of seismic wave amplification, soil-structure 
interactions and liquefaction be included in seismic design of structures? How 
are these issues addressed in the IS 1893 code?  

• It is often observed that buildings founded on filled-up land suffer severe 
damage during major earthquakes. Why is this so?  

• Search the web and obtain information on failure of a building, a dam and a 
bridge due to earthquake induced liquefaction of soil layer.  
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Figure 10.1 Schematic of wave amplification. 
 
 

 
 

(a) 
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(b) 

 
Figure 10.2 Setup for the study of seismic wave amplification; (a) Details of experimental 

setup; (b) Details of the shear layer model. 
 
 

 
 

(a) 
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(b) 

 

(c) 
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(thickness = 3mm) 

(d) 
 

Figure 10.3 Setup for the study of soil structure interaction (a) Combined shear layer 
building frame system; (b) Building frame model; (c) Details of the frame model I.  
(d) Details of frame model II. 

 

 
 

Figure 10.4a Setup for demonstration of phenomenon of liquefaction. 
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Figure 10.4b Details of the ply wood box. 

 

 
(a) 
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(b) 

 

 
(c) 

Fig 10.5 Schematic diagram of experimental setup (a) Soil model subjected to base 
motion; (b) Structure model subjected to base motion; (c) Soil-structure model subjected 
to base motion. 
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(a) 
 

 
(b) 

 
Figure 10.6 Typical variation of the amplification factor (a) amplitude; (b) phase. 
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Figure 10.7 Amplification factor obtained using one mode approximation and the exact 
solution 

 

 
 

Figure 10.8 Models for soil-structure systems (a) Uncoupled analysis (b) Coupled 
analysis 
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Figure 10.9a Coupled and uncoupled analysis of soil-structure system I. 
 
 

 
Figure 10.9b Coupled and uncoupled analysis of soil-structure system II. 
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Figure 10.10 The state of the brick block after liquefaction has occurred; notice the 
ponding of water at the surface. Figure 10.4a shows the state of the system before the 
dynamic base motions are applied. 
 
 

Table 10.1 Equipments used in soil structure interaction 

S.No. Equipments Quantity 
1 Oscilloscope 1 
2 Accelerometers 2 
3 Transducers conditioning amplifiers 1 

 

Table 10.2 Physical properties of parts of the soil-structure model I and II 

Sl. 
No. 

 
Part 

 
Notations Material 

Quant
ity 
(Q) Mass 

Mass 
density 

(ρ) 
Kg/m3 

Young’s 
Modulus 
(E) N/m2 

Column MC1 Aluminum 4    
Slab MS1 Perspex 1    
Bottom slab MBS1 Perspex 1    

1 
 

Structure 1 
 

Screws Mscrews1 Mild steel -  -  
Column MC2 Aluminum 4    
Slab MS2 Perspex 1    
Bottom slab MBS2 Perspex 1    

2 
 

Structure 2 
 

Screws Mscrews2 Mild steel -  -  
Soil MF Foam 1   - 
Outer layer 1 MOL1 Perspex 2    
Outer layer 2 MOL2 Perspex 1    

3 
 

Soil model 
 

Hinges MH Mild steel -  -  
Allen screw MAP1 Mild steel -  -  4 Assembling 

Parts Allen nuts MAP2 Mild steel -  -  
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Table 10.3 Geometric data of the soil-structure models I and II 

 

 
 
 
 
 
 
 
 
 
 
 
 

Table 10.4 Details of the sensors used 

Sensitivity, S 
Sl. No. Sensor 

pC/ms-2 pC/g 
Mass 

kg 
1     
2     
3     

 

Table 10.5a CASE 1-Free vibration test data on soil-structure model I 

Observations S.No. Quantity Notation 
Soil model Structure model 1 Soil structure 

model 
1 Amplitude of 0th peak A0    
2 Amplitude of nth peak An    
3 Number of cycles n    
4 Damping ratio ζ    
 

 

Table 10.5b CASE 2- Free vibration test data on soil-structure model II 

Observations S.No. Quantity Notation 
Soil model Structure model 2 Soil structure 

model2 
1 Amplitude of 0th peak A0    
2 Amplitude of nth peak An    
3 Number of cycles n    
4 Damping ratio ζ    

 

Dimensions in mm Sl. 
No. 

 
Part Material 

 
Quantity 

(Q) 
Depth 

(D) 
Width 

(B) 
Length 

(L) 
Column Aluminum 4    
Slab Perspex 1    
Bottom slab Perspex 1    

1 
 

Structure 1 
 

Screws Mild steel - - - - 
Column Aluminum 4    
Slab Perspex 1    
Bottom slab Perspex 1    

2 
 

Structure 2 
 

Screws Mild steel - - - - 
Soil Foam 1    
Outer layer 1 Perspex 2    
Outer layer 2 Perspex 1    

3 
 

Soil model 
 

Hinges Mild steel - - - - 
Allen screw Mild steel - - - - 4 Assembling Parts 
Allen nuts Mild steel - - - - 

5 Height of soil model HS = 0.305m 
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Table 10.6a Base motion test data on single-story shear building frame1 

Sl.no. 
Frequency 

(Hz) 

Structure model 
Amplitude 

σ1 
rms (mV) 

Conversion 
Factor 

CF (V/m) 

Structure model 
displacement 

TY = 2  (CF) σ1 

(m) 
Ratio      Of      

H/YT  

      
1      
2      
3      
4      
5      
6      
7      
8      
9      

10      
11      
12      
13      
14      
15      
16      
17      
18      
19      
20      
21      
22      
23      
24      
25      

 

Where ‘H’ is the base motion displacement =  

 

 

Table 10.6b Base motion test data on single-story shear building frame II 

Sl.no. 
Frequency 

(Hz) 

Structure model 
Amplitude 

σ1 
rms (mV) 

Conversion 
Factor 

CF (V/m) 

Structure model 
displacement 

TY = 2  (CF) σ1 

(m) 
Ratio      Of      

H/YT  

      
1      
2      
3      
4      
5      
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6      
7      
8      
9      

10      
11      
12      
13      
14      
15      
16      
17      
18      
19      
20      
21      
22      
23      
24      
25      

 

 

Table 10.7 Base motion test data on soil model 

Sl.no. 
Frequency 

(Hz) 

Soil   model 
Amplitude 

σ1 
rms (mV) 

Conversion 
Factor 

CF (V/m) 

Soil     model 
displacement 

TU = 2  (CF) σ1 
(m) 

Ratio      Of      
H/UT  

      
1      
2      
3      
4      
5      
6      
7      
8      
9      

10      
11      
12      
13      
14      
15      
16      
17      
18      
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19      
20      
21      
22      
23      
24      
25      

Where ‘H’ is the base motion displacement = 

 

Table 10.8a Base motion test data on soil-structure model I 

Sl. 
No. 

Frequency 
(Hz) 

Structure 
model 

Amplitude 
σ1 

rms (mV) 

Conversion 
Factor 

CF(V/m) 

Soil   model 
Amplitude

σ2 
rms (mV) 

Conversion 
Factor    

CF(V/m) 

Structure 
model 

displacement
Y= 2 (CF) 

σ1 (m) 

Soil     
model 

displacement 
U= 2  (CF) 

σ2 (m) 

Ratio      
Of      

H/Y  

Ratio      
Of      

H/U  
          

1          
2          
3          
4          
5          
6          
7          
8          
9          

10          
11          
12          
13          
14          
15          
16          
17          
18          
19          
20          
21          
22          
23          
24          
25          

 

Where ‘H’ is the base motion displacement   
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Table10.8b Base motion test data on soil-structure model II 

Sl. 
No. 

Frequency 
(Hz) 

Structure 
model 

Amplitude 
σ1 

rms (mV) 

Conversion 
Factor 

CF(V/m) 

Soil   model 
Amplitude

σ2 
rms (mV) 

Conversion 
Factor    

CF(V/m) 

Structure 
model 

displacement
Y= 2 (CF) 

σ1 (m) 

Soil     
model 

displacement 
U= 2  (CF) 

σ2 (m) 

Ratio      
Of      

H/Y  

Ratio      
Of      

H/U  
          

1          
2          
3          
4          
5          
6          
7          
8          
9          

10          
11          
12          
13          
14          
15          
16          
17          
18          
19          
20          
21          
22          
23          
24          
25          

 

Table 10.9a Case 1 Estimate of the natural frequencies of soil-structure model I. 

Natural frequencies in Hz 
Structure model I Soil model Soil-structure model I Mode No. 

Theory Experiment Theory Experiment Theory Experiment 
1       
2 - - - -   

 

Table 10.9b Case 2 Estimate of the natural frequencies of soil-structure model II. 

Natural frequencies in Hz 
Structure model II Soil model Soil-structure model II Mode No. 

Theory Experiment Theory Experiment Theory Experiment 
1       
2 - - - -   
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 Appendix A 
 

Analysis of linear multi-degree of freedom vibrating systems 
 

A.1 The search for a benign coordinate system 
 
The generic form of equation of motion of externally driven linear multi-degree of 
freedom (mdof) vibrating systems with viscous damping model is given by 
 

00 )0(;)0(
)(

xxxx
tfKxxCxM

&&

&&&

==
=++

 

…(A.1) 
Here M, C and K are, respectively, the mass, damping and stiffness matrices of size 

nn× ; xxx &&& &, , are respectively, the displacement, velocity and acceleration vectors of 
size 1×n ; f(t) is the 1×n external forcing vector; and, 00 & xx & are, respectively, the initial 
displacement and velocity vectors of size 1×n . We take in this discussion that the 
structural matrices M, C and K are all symmetric. This equation represents the condition 
of equilibrium of the system. The equation of motion, for a given system, is not unique 
and it depends upon the coordinate system in which the analyst chooses to represent the 
dofs. This would mean that we can assume that the equation of motion has been 
formulated in a coordinate system that appeals to the analyst.  
 
It may be noted that while dealing with static problems, the choice of coordinate system 
is often dictated by geometry of structure and applied loads. Thus, in the analysis of a 
circular plate under axi-symmetric loads, it would be most convenient to formulate the 
problem in cylindrical coordinate system; similarly, for a rectangular plate, the problem is 
easy to handle in Cartesian coordinate system. Of course, the use of polar coordinates for 
a rectangular plate or Cartesian coordinate system for a circular plate in itself is perfectly 
admissible: but then, we would be complicating the formulation unnecessarily. The 
response variables in such cases would get coupled with the details of this coupling 
governed by the choice of coordinate system used. While this issue is somewhat simple 
to understand in a static problem, in a dynamic problem, however, the coupling between 
dofs occurs in a much more subtle manner. For instance, even when we use polar 
cylindrical coordinates for the vibration analysis a circular plate, the equations of motion 
governing various dofs get mutually coupled! This coupling itself would be manifest in 
one or more of the structural matrices, namely, M, C or K, being non-diagonal. Now, if 
one were to introduce a new coordinate system, defined through the 
transformation zx Φ= , where, =Φ an nn× matrix and z is the 1×n vector representing 
the new dofs, the structural matrices in the new coordinate system would be different 
from M, C and K. To see this, we can write the equation of motion in the z-coordinate 
system as  
 

)0()0();0()0(
)(

zxzx
tfzKzCzM

&&

&&&

Φ=Φ=
=Φ+Φ+Φ
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…(A.2) 
By pre-multiplying by tΦ  one gets 
 

)0()0();0()0(
)(

11 xzxz
tfzKzCzM tttt

&&

&&&
−− Φ=Φ=

Φ=ΦΦ+ΦΦ+ΦΦ
 

…(A.3) 
One can now think that the matrices ΦΦ=ΦΦ=ΦΦ= KKCCMM ttt &,, can be 
thought of the structural matrices in the new z-coordinate system. Clearly these matrices 
depend upon the definition of the coordinate transformation matrix Φ . If one or more of 
the matrices M, C and K are non-diagonal, it may be expected that one or more of the 
matrices CM , , or K  would also be non-diagonal, unless, we choose the transformation 
matrix Φ  intelligently! For a moment, let us imagine that we have indeed found out a 
magic Φ  that makes all the three matrices CM , , and K  diagonal. The upshot of this 
would be that, the equation of motion in the new z-coordinate system would get mutually 
uncoupled. That is, a n-dof system simply becomes a collection of n mutually uncoupled 
sdof systems. From the point of view of solving equation A.1, this is a major 
simplification. Therefore, it makes perfect sense to seek the transformation matrix Φ  that 
uncouples the equation of motion. Indeed, the search for this coordinate system is a major 
theme is the subject of structural dynamics.  
 
A.2 The modal matrix and orthogonality 
 
We begin the search for the coordinate system by considering a seemingly unrelated 
problem of undamped free vibration analysis. The governing equation of motion here is 
given by 
 

0=+ KxxM &&  
…(A.4) 

Furthermore, we seek a special solution to this problem in the form 
 

)exp( tix ωφ=  
…(A.5) 

Here ω  is an unknown scalar quantity and φ  is a 1×n vector. By substituting this 
solution in equation A.4, we get 
 

φωφ MK 2=  
…(A.6) 

Clearly, 0=φ  is a valid solution but we are not interested in this trivial solution since it 
does not teach us anything about the system under study. At this stage it is to be 
remembered that ω  is an unknown still to be determined. Therefore, we are lead to the 
question: can we find ω  for which 0≠φ is a possible solution to equation A.6? This 
would mean that equation A.6 represents an algebraic eigenvalue problem. As is well 
known, the condition for non-trivial solution for A.6 is that  
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02 =− MK ω  
…(A.7) 

By noting that K and M are real valued, symmetric, and are associated, respectively, with 
potential and kinetic energies, which are, themselves, non-negative, the roots of the above 
equation would be real valued and nonnegative. Thus we could arrange all the 
eigenvalues in an ascending order as 
 

22
2

2
1 nωωω ≤≤≤ L   

…(A.8) 
with the associated eigenvectors designated by { } .1

n
ii =φ  Furthermore we could assemble 

all the eigenvectors in a single nn×  matrix as 
 

[ ]nφφφ L21=Φ  
…(A.9) 

This matrix is termed as the modal matrix and it possesses special properties known as 
orthogonality properties. To see this we write equation of motion A.6 for two different 
values of eigenvalues as 
 

sss

rrr

MK

MK

φωφ

φωφ
2

2

=

=
 

…(A.10, A.11) 
We pre-multiply the first of the above equations by t

sφ  and the second by t
rφ  to get 

 

s
t
rss

t
r

r
t
srr

t
s

MK

MK

φφωφφ

φφωφφ
2

2

=

=
 

…(A.12, A.13) 
Transposing both sides of equation A.13, and noting that tt MMKK == & , we get 
 

r
t
ssr

t
s MK φφωφφ 2=  

…(A.14) 
Now, subtracting equation A.12 from equation A.14, we get 
 
( ) 022 =− r

t
ssr Mφφωω  

…(A.15) 
Thus, for ,sr ≠  if ,22

sr ωω ≠  it follows that 
 

.0 srifM r
t
s ≠=φφ  

…(A.16) 
From equation A.12, it would also follow that,  
 

.0 srifK r
t
s ≠=φφ  
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…(A.17) 
Equations A.16 and A.17 are true for all nsr L,2,1, = . This fact can be succinctly stated 
by saying that the matrices ΦΦ=ΦΦ= MMKK tt & are both diagonal. We say that the 
modal matrix Φ  is orthogonal with respect to the mass and stiffness matrices. In fact, our 
search for the transformation matrix that simultaneously diagonalizes both M and K 
matrices is over! This matrix is indeed the modal matrix .Φ   
 
It may be recalled that the eigenvectors associated with equation A.6 are not unique, in 
the sense that, if φ  is a eigenvector, a constant multiplier of ,φ  namely, αφ , is also an 
eigenvector. It is a common practice to scale the eigenvectors such that the matrix 

ΦΦ Mt  becomes an identity matrix. In this case we get 
 

[ ]2& i
tt DiagKIM ω=ΦΦ=ΦΦ  

…(A.18) 
When the modal matrix has been made unique by scaling the eigenvectors as above, we 
say that the modal matrix has been mass normalized and we call these scaled 
eigenvectors as normal modes. The quantity iω  is called the ith natural frequency of the 
system.  It follows that an n-dof system would possess n natural frequencies and n normal 
modes.  
 
A.3 Undamped forced response analysis 
 
We now consider a slightly modified version of equation A.1, namely,  
 

00 )0(;)0(
)(

xxxx
tfKxxM

&&

&&

==
=+

 

…(A.19) 
We begin by performing the free vibration analysis, as outlined in the previous section, 
and obtain the natural frequencies ,,2,1, nii L=ω  and the mass normalized modal matrix 

.Φ  Next, we introduce the transformation, zx Φ= , and derive the equation of motion in 
the new coordinate system as (see equation A.3) 
 

)(tFfzKzM ttt =Φ=ΦΦ+ΦΦ &&  
…(A.20) 

By the virtue of orthogonality property of the modal matrix (equation A.18) it turns out 
that the generalized mass and stiffness matrices, ΦΦ=ΦΦ= KKMM tt &, are both 
diagonal. If the modal matrix is normalized as in equation A.18, it follows that, equation 
A.20 is equivalent to a set of n sdof systems 
 

.,,2,1);(2 nitFzz iiii L&& ==+ω  
…(A.21) 

Solution of these set of equations is order of magnitude simpler than solution of equation 
A.19. In fact, this indeed, is the advantage of introducing the transformation zx Φ= . To 
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solve equation A.19 we would need the initial conditions in the new z-coordinate system. 
These can be determined by noting that  
 

)0()0(
)0()0(

zMMx
zx

tt ΦΦ=Φ⇒

Φ=
 

…(A.22) 
This would mean that  
 

)0()0(&)0()0( xMzMxz tt && Φ=Φ=  
…(A.23) 

It may be noted that the above method for finding the initial conditions avoids the need to 
invert the modal matrixΦ .  
 
A.4 Introduction of damping: will the modal matrix Φ  also diagonalize C? 
 
Now we consider the equation of motion A.1 and proceed with the transformation 

zx Φ= . This would lead to the equation of motion 
 

)(tFfzKzCzM tttt =Φ=ΦΦ+ΦΦ+ΦΦ &&&  
…(A.24) 

While we have shown that the matrices ΦΦ=ΦΦ= KKMM tt &, are diagonal, there is 
no such property associated with the matrix .ΦΦ Ct  This would mean that, even after 
transforming equation A.1 into the new form (A.24), the coordinates continue to be 
mutually coupled with the coupling taking place through the new non-diagonal damping 
matrix .ΦΦ= CC t  Thus the effort expended in determining the undamped natural 
frequencies and mode shapes is wasted. This disappointment could be avoided if we 
demand that the damping matrix C be such that ΦΦ= CC t is diagonal! If the damping 
matrix C indeed satisfies this condition, we say that the system is classically damped. For 
such systems, equation A.24 becomes equivalent to a set of uncoupled, damped sdof 
systems, given by 
 

nitFzzz iiiiiii ,,2,1);(2 2 L&&& ==++ ωωη  
…(A.25) 

with initial conditions given as before by equation A.23. The quantity iη  is called the ith 
modal damping constant. One of the popular models for classical damping is known as 
the Rayleigh damping model. Here one assumes that the damping matrix is linearly 
proportional to the mass and stiffness matrices as  
 

KMC βα +=  
…(A.26) 

Here βα &  are scalar constants to be experimentally determined. In this case, it turns 
out that 
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22

2 2

i

i
i

iii

βω
ω
αη

βωαωη

+=⇒

+=
 

…(A.27) 
Thus, in an experimental determination of βα & , one could determine modal damping 
ratios iη  for at least two modes and use them in setting up two equations for the 
unknowns βα & . This implies that, with Rayleigh’s damping model, we can specify 
damping ratio for only two modes and for all other modes, the damping ratios get 
automatically specified in terms of βα & . It is to be noted that classical damping 
matrices that are more general than the Rayleigh’s damping model exists that permit 
specification of modal damping values for any set of nr ≤  modes.  
 
 
A.5 Classical damping matrix in terms of modal damping values 
 
Here we consider the problem of determining the damping matrix C given 

.,,2,1, nii L=η  A direct approach to solve this problem is to note that, 
 

[ ] ΦΦ= Cdiag t
iiωη2  

…(A.28) 
and get 
 

[ ] [ ] 11 2 −−
ΦΦ= ii

t diagC ωη  
…(A.29) 

This way of finding C thus involves inverting the modal matrix and its transpose and, 
therefore, appears to be very inefficient from a computational perspective. To remedy this 
situation we note that 
 

[ ] [ ]
[ ] Φ=Φ⇒

Φ=ΦΦΦ⇒

=ΦΦ

−

−−

M

M

IM

t

ttt

t

1

11  

…(A.30) 
Similarly, it follows that 
 

MtΦ=Φ−1  
…(A.31) 

Combining equations A.30 and A.31 with A.29 we get 
 

[ ] MdiagMC t
ii ΦΦ= ωη2  

…(A.32) 
Clearly, this equation does not involve the inversion of modal matrix and its transpose. 
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A.6 Solution of equation A.1 without coordinate transformation 
 
It is possible to solve equation A.1 without having to uncouple the equation of motion. 
For instance, one could use numerical integration procedures such as Runge-Kutta 
methods or the predictor-corrector methods to achieve this. Alternatively, one could use 
integral transform techniques, such as, Laplace transforms, to solve the problem. For the 
special case in which the excitation is harmonic, that is, ( )tiftf λexp)( 0= , and, interest 
is focused on steady state behavior, it can be noted that solution of equation A.1 can be 
sought in the form 
 

)exp()( tiXtx λ=  
…(A.33) 

Here X is the unknown vector of amplitude of response to be determined. Substituting 
this in equation A.1, one gets, 
 

[ ] 0
12

0
2 ][

fKCiMX

fXKCiM
−

++−=⇒

=++−

λλ

λλ
 

…(A.34) 
The matrix KCiMD ++−= λλλ 2)(  can be called as the dynamic stiffness matrix. This 
matrix is a complex valued symmetric matrix that is dependent upon the driving 
frequency .λ   
 
 
 
 
 
 
 
 


